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Abstract

In this paper, I introduce a novel system of dynamic equations that capture the

revenue-generation and decision-making process of charitable fundraising. Exploiting

plausibly exogenous variation in the national minimum wage, I estimate the returns to

fundraising for large “green” charities based in the UK. I find that for the charity in the

sample with the median fundraising ratio (defined as the ratio of fundraising revenue

to expenditure) every additional £1 spent on fundraising raises £1.45 in return. I also

find tentative evidence that the collective returns to fundraising, which account for the

interplay between rival charities, are greater than individual returns to fundraising,

that a charity could earn in isolation. I also use the estimated equations to charac-

terise and estimate the bias in the fundraising ratio (ROI) as a measure of the true

fundraising efficiency of a charity, i.e. the inherent ability of the fundraising managers

to raise money irrespective of factors such as the size of their budget, the popularity

of their cause or the influence of their rival charities. I find that whilst the fundraising

ratio (ROI) is heavily biased by factors such as these, it remains a strong predictor

of fundraising efficiency, and therefore remains a useful tool for charity managers and

regulators. However, due to weak identification, heterogeneous causal effects and per-

sistent sample selection bias, the existence and magnitude of the true parameters, in

addition to the direction of average bias in the fundraising ratio, is very uncertain and

explains a lack of statistical significance of the estimated parameters.

∗I would like to thank Dr Levy, Lucy, Akmal, Ibby and my EME peers for their invaluable feedback and
guidance.
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1 Introduction

The Oxfam Scandal in 2012 brought renewed scepticism of large charities, in particular

regarding the efficient and effective use of donor funds. In addition, austerity measures, the

COVID19 pandemic and rapidly changing donor preferences have forced charities in every

subsector to explore new fundraising strategies that innovatively and effectively capture

donors.

Green Charities play an increasingly important part in raising awareness for man-made

climate change, tackling environmental exploitation and initiating conservation projects -

strongly enabled by large-scale fundraising efforts. In this paper, I introduce a system

of equations that capture the revenue-generation and decision-making process of a charity

engaging in fundraising. Exploiting plausibly exogenous variation in the national minimum

wage, I use an instrumental variables strategy to identify these equations and estimate the

monetary returns to charitable fundraising for large Green Charities 1 based in the UK, using

extensive data from the Charity Commission.

The identification of the proposed system of equations allows me to separately estimate

two types of returns to fundraising (defined as the causal effect of fundraising spending on

fundraising revenue): (1) the individual returns to fundraising, which are earned when a

charity fundraises in isolation, and (2) the collective returns, which additionally account for

the interplay between rival charities. The estimated equations also allow me to characterise

the bias in the fundraising ratio, or rate of return on investment (ROI) as a measure of

fundraising efficiency.

Charitable fundraising is an inherently economic phenomenon, comparable to investment

or advertising, in that it describes the allocation of current resources towards obtaining future

resources. To illustrate, a charity - Charity A - may choose to spend £500 to organise a

fundraising gala that generates £2000 in donations, whilst its rival2 - Charity B - spends

£5000 on a marketing campaign that generates £10,000 in the same year.

Using the ROI as an indicator for the efficiency of fundraising, 3 Charity A is said to

be more fundraising efficient than Charity B, since for every £1 spent on fundraising, they

receive £4 (2000
500

= 4) back in donations, compared to the £2 (10000
5000

= 2) received by Charity

B. The National Council for Voluntary Organisations (NCVO) and Charity Navigator- a

charity assessment organisation- both consider the ROI to be a useful indicator of financial

performance. This raises the question: if the ROI measures the efficiency of fundraising,

should charities seek to maximise their fundraising ROI ?

Employing the fundraising ROI, henceforth the fundraising ratio, as a measure of how

inherently efficient a charity is at generating income ignores much of the economics underpin-

1I return to the definition of “Green” Charities in the Data Section
2The preferred term by charity managers is “peer” but I use “rival” throughout this paper to capture the

competitive connotations.
3fundraising ratio (ROI) = fundraising revenue

fundraising spending
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ning the fundraising process. For example, Charity B may employ more innovative fundrais-

ing techniques than Charity A, making it intuitively more efficient, but has a smaller ratio

simply because their cause is significantly less fashionable or well-known amongst the donor

population4, perhaps due to the fundraising inactivity of charities with the same cause. This

means Charity B requires more effort than Charity A to raise the same amount of money,

resulting in a lower fundraising ratio. Whilst true fundraising efficiency is something charity

fundraisers should strive to improve, attempting to maximise the fundraising ratio, which is

not entirely not under the control of the charity, can lead to unintended consequences.

Secondly, the fundraising ratio ignores the net return on fundraising, which indicates

how much better off a charity is from fundraising. In the example above, Charity B is

economically better off despite a lower fundraising ratio, since their net revenue (£10,000-

£5000= £5000) is higher than Charity A‘s net revenue (£2000-£500=£1500). A higher net

revenue is analogous to higher profit and by implication, Charity B has more to spend on

charitable activities that benefit their beneficiaries (Steinberg (1994)). Hence, as an indicator

of performance, a stronger case could be made to strive for optimality5 of fundraising efforts

rather than efficiency.

4I treat a charity’s beneficiaries as exogenous to charity managers, hence a less popular cause as a driver
of a lower fundraising ratio should not indicate true inefficiency.

5The optimal fundraising effort or spending is the level that maximises the net revenue. We return to
the concept of optimality in section 2 and Equation 2
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2 Background

Figure 1 presents a graphical illustration of the stylised interplay between the observable

variables Fit - representing the fundraising revenue (donations) of a charity i in time t, Bit -

representing the fundraising expenditure (budget) of charity i in time t and Ait - representing

the average fundraising expenditure of charity i‘s rivals in time t. I explain the interpretation

of the graphical parameters in Figure 1 in this section.

Figure 1: Interplay between own fundraising expenditure, rival fundraising expenditure
and fundraising revenue across time

The most fundamental causal effects of interest are the contemporaneous and lagged

effects of own charity fundraising spending on donations, represented by the β0 and β1
coefficients respectively in Figure 1. The existence of β1 is highly plausible since it is likely

that the individual returns to fundraising are not limited to the same year; for example, a

marketing campaign or investment in a new fundraising channel may expect to yield returns

over a longer time period.

The other causal effects of interest relate to the interplay between rival charities, char-

acterised by two main interactions: spillover effects (e.g. the effect of Charity A’s spending

on Charity B’s donations) and strategic effects (e.g. the effect of Charity A’s spending on

Charity B’s spending). Spillover effects are represented by γ0 whilst strategic effects are

represented by ω0 in Figure 1.

In addition, φ1 and ρ1 represent inertia in the fundraising process, whilst ψ1 represents

the enabling effect of higher income in time t − 1 on fundraising expenditure in time t. I

return to interpretation and identification of these parameters in section 3.

Jacobs and Marudas (2006) estimate the individual returns to fundraising for a subset

of UK and US based charities and use estimates of the fundraising elasticity to categorise

the fundraising efforts of the subset into “excessive”, “optimal” and “insufficient”, based on

their fundraising behaviour. Jacobs and Marudas (2006) builds on the work of Okten and

Weisbrod (2000), Posnett and Sandler (1989), Steinberg (1994) and Khanna et al. (1995)

which, taken together, find evidence of net-revenue-maximising behaviour across large US

and UK charities to be mixed and vary widely across charity subsectors. Whilst the results

are convincing, these papers fail to account for the impact of rival charities on fundraising ef-

forts, (via strategic effects) and fundraising outcomes (via spillover effects), hence potentially
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suffer from significant omitted variable bias.

Literature on the effect of advertising on sales surveyed in Bagwell (2007) present im-

portant hypotheses regarding the existence and direction of fundraising spillover effects.

Bagwell (2007) reports that the existence of positive strategic effects (advertising inducing

rivals to advertise), negative spillover effects (advertising negatively impacting the sales of

rivals) and contemporaneous and lagged own brand advertising effects on sales were first

evidenced by Jean-Jacques Lambin in 1976. Vardanyan and Tremblay (2006) builds on the

work of Lambin, finding evidence that positive spillover effects of advertising are more likely

to occur in emerging markets, as advertising increases total demand (increasing the total

pie) whereas negative spillovers are more likely in mature markets, as advertising simply

results in business stealing (a redistribution of the existing pie). Hence, it is likely that the

direction of fundraising spillovers will vary across different charity subsectors: in emerging

charity subsectors such as the environmental sector, fundraising may be inclusive, generat-

ing positive spillover effects on other charities as public sensitivity towards the environment

grows, whereas in more mature charity subsectors such as housing, the donor pool is rel-

atively stable hence fundraising may be exclusive, generating negative spillover effects as

charities steal donors from each other.

Arulampalam et al. (2015) investigate the returns to fundraising for large UK-based

overseas development charities, and identify strong positive fundraising spillovers (positive

externalities) indicating that the efforts of one development charity may increase contribu-

tions to other development charities. However, in only investigating fundraising revenues,

Arulampalam et al. (2015) are not able to fully characterise the interactions between rival

charities, which are not limited to spillover effects. This is depicted in Figure 1, where the

total effect of rivals fundraising spending Ait on own fundraising revenue Fit is given by the

direct spillover effect γ0 plus the indirect effect through Bit, via the strategic effects ω0. For

example, an increase in fundraising efforts by Charity A may directly affect Charity B’s do-

nations, but also induce Charity B to respond by intensifying their own fundraising efforts 6.

Rose-Ackerman (1982) presents a theoretical framework for the existence of positive strategic

effects (strategic complementarity) in the fundraising process between rival charities; in the

extreme, they predict a race-to-the-bottom as competition for donors incentivises a vicious

cycle of ever-increasing fundraising spending, depleting the net revenues of charities and thus

their capacity for charitable impact in the process.

In this paper, I present a novel system of equations that impose a structure on the stylised

graphical model in Figure 1. A model that captures the decision making process and the

revenue generating process, including own fundraising effects, strategic and spillover effects

has not been explored before empirically in the context of large charities. The empirical

strategy involves exploiting plausibly exogenous variation in lagged fundraising revenues

and expenditures, as well as in the national minimum wage. The causal identification of the

parameters illustrated in Figure 1 will allow me to characterise the bias in the fundraising

6These strategic effects ω0 are analogous to general equilibrium effects.
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ratio as a measure of fundraising efficiency.

3 Theoretical Framework

I first specify the following model that treats fundraising revenue Fit as the outcome variable

of a dynamic production function:

Fit = EitF
ρ1
it−1B

β0
it B

β1
it−1A

γ0
it (1)

Where Bit and Bit−1 represent current and lagged fundraising expenditures (inputs), Ait
represents the current average fundraising expenditure of charity i’s rivals and Eit represent

unobservable (Hicks-neutral) shocks to fundraising revenue. All parameters are interpreted

as partial elasticities. Applying the log-transformation yields:

fit = ρ0 + ρ1fit−1 + β0bit + β1bit−1 + γ0ait + εit (Production Function)

Where εit is a mean-zero error term assumed to be uncorrelated across charities and ρ0
is a constant that captures the average autonomous fundraising revenue across time and

across charities. The own charity fundraising elasticities β0 and β1 capture the impact

of fundraising efforts on fundraising outcomes across time; these parameters nest different

causal mechanisms linking fundraising efforts to outcomes, including through increased brand

awareness, donor retention and reliability signals. Persistence in fundraising revenue over

time is captured by ρ1, henceforth the brand effect, which may exist due to donor inertia or

the signalling effect of high income in time t − 1, encouraging high donations in time t. γ0
captures contemporaneous spillover effects outlined in section 2.

Next, I assume that charities choose their fundraising expenditure (Bit) to maximise the

expected net fundraising revenue (πit = Fit − Bit) in the same period, conditional on their

past and current information at time t. If it exists, this implies that the optimal fundraising

expenditure Bopt
it satisfies:

Bopt
it = argmax

Bit

[
E(πit|Fit−1, Bit−1, Ait)

]

Solving the first order condition and setting the marginal product of Bit on Fit equal to

1 yields the unconstrained optimum level of fundraising expenditure:

7



Bopt
it =

[
β0E(Eit|.)Bβ1

it−1F
ρ1
it−1A

γ0
it

] 1
1−β0

(2)

which can be represented in the reduced form:

Bit = GitB
φ1
it−1F

ψ1

it−1A
ω0
it

taking logs yields:

bit = φ0 + φ1bit−1 + ψ1fit−1 + ω0ait + git (Decision Function)

where git is a mean zero error term assumed to be uncorrelated across charities and φ0 is a

constant. These reduced-form parameters φ1, ψ1 and ω0 also nest the causal interpretations

introduced in section 2, as persistence, enabling and strategic effects respectively. Therefore,

I choose not to impose the restrictions relating the parameters in the Fundraising Produc-

tion Function to the parameters in the Fundraising Decision Function7. Figure 2 depicts

the stylised system with the parameters of both models alongside each other, ignoring the

unobservables8.

Figure 2: Complete model

I assume that that the individual returns to fundraising for charity i in any given time

t are defined as the relative changes in fundraising revenue as a result of a relative change

7Imposing the parameter restrictions would assume that all charities achieve static net-revenue maximi-
sation and are unconstrained in fundraising expenditure - this is not likely to hold for all charities. See
section 10 for a deeper discussion about heterogeneity amongst charities

8In the complete system, I make several simplifying assumptions, including: (1) contemporaneous effects
are constant over time, (2) own fundraising effects, enabling effects persistence effects and brand effects are
at most one period lagged, (3) spillover and strategic effects are at most contemporaneous (lagged spillover
effects γ1 and lagged strategic effects ω1 do not exist in reality) and (4) strategic effects are uni-directional -
a single charity cannot influence the average expenditure of its rivals. The assumption that persistent effects
φ1 are incident on average rival expenditure is provided for completeness and is irrelevant for the analysis.
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Parameter Label
β0 Contemporaneous own fundraising effects
β1 Lagged own fundraising effects
ω0 Strategic effects
γ0 Spillover effects
ψ1 Enabling effects
φ1 Persistence effects
ρ1 Brand effects

in fundraising expenditure by charity i in time t, whilst the collective returns additionally

account for the relative changes in fundraising revenue that accrue due to a relative change

in the average fundraising expenditure of rivals to charity i in time t. In terms of elasticities,

the relationship between the individual returns and collective returns can be represented as

follows:

Collective returns︷ ︸︸ ︷
dFit
dBit

Bit

Fit︸ ︷︷ ︸
Individual returns

+
dFit
dAit

Ait
Fit

(3)

Given the interpretation of the parameters of interest as partial elasticities: ∂Fit
∂Bit

Bit
Fit

= β0,
∂Bit
∂Ait

Ait
Bit

= ω0 and the total derivative of Fit with respect to Ait:
dFit
dAit

= γ0
Fit
Ait

+ β0
∂Bit
∂Ait

Fit
Bit

,

substituting in the derivatives into the above condition yields:

Collective returns︷ ︸︸ ︷
β0︸︷︷︸

Individual returns

+ β0ω0 + γ0 (4)

Which implies that the size of the collective returns to fundraising relative to the individ-

ual returns depends crucially on the direction of the direct spillover effects γ0 and indirect

effect β0ω0 of the strategic and own fundraising effect combined 9.

Strictly speaking, Fit and Bit are both conditional expectations, conditional on the ob-

servables in each equation, such that the conditional unobservables do not vary with the

observable variables10. Hence it is useful at this point to examine the unobservable mean-

zero error term εit and its descendant git
11 which are assumed to be uncorrelated across

charities. εit captures the idiosyncratic determinants of fundraising revenue ignored by the

9The direct and indirect effects that constitute the total elasticity of average rival fundraising expenditure
with respect to fundraising revenue are represented by the two paths from Ait to Fit in Figure 2.

10This requires E[Eit|Fit−1, Bit, Bit−1, Ait] = eρ0 and E[Git|Bit−1, Fit−1, Ait] = eφ0 , which is similar to
strict exogeneity.

11git is a descendant of εit since Git could be interpreted as the expected component of Eit conditional on
a charity’s past observables - as can be seen from Equation 2
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model, which can be broadly categorised into charity-driven and donor-driven unobserv-

able factors. Charity-driven unobservables consist of factors which are under the control of

the charity, including inputs such as managerial quality, fundraising techniques and trans-

parency, whereas donor-driven unobservables are not under the control of the charity and

taken to be exogenous, including donor preferences and external events affecting the real or

perceived vulnerability of the charity’s beneficiaries. For example, an increase in extreme

weather events leading to natural disasters can raise public awareness of man-made climate

change, leading to an exogenous increase in donations to Green Charities.

I posit that it is the charity-driven unobservable factors that best characterise an inherent

fundraising efficiency that the fundraising ratio Rit is designed to measure, analogous to

Total Factor Productivity (TFP) in the context of production functions. Substituting the

fundraising production function for Fit into the definition of the fundraising ratio Rit and

Fit−1 for Rit−1Bit−1 yields:

Rit =
Fit
Bit

= Eit(Rit−1Bit−1)
ρ1Bβ0−1

it Bβ1
it−1A

γ0
it

taking logs and assuming that εit can be decomposed linearly into a charity-driven com-

ponent εcit and a donor-driven component εdit yields:

rit − εcit = εdit + (β0 − 1)bit + (β1 + ρ1)bit−1 + γ0ait + ρ1rit−1 (5)

Where the left-hand-side gives the bias in the fundraising ratio in logarithms as a measure

of the true fundraising efficiency εcit and the right-hand-side shows the factors that determine

the size and direction of the bias. Equation 5 shows that unobservable donor shocks εdit can

directly affect the bias, whilst the bias induced by rival spending Ait depends on the sign

of the spillover effect γ0. In addition, if we assume that fundraising expenditures are stable

over time (bit ≈ bit−1), there exist diminishing returns to scale (β0 + β1 < 1) and fundraising

revenues are very volatile (ρ1 << 1) then Equation 5 predicts that larger charities (with

higher fundraising budgets) have artificially low fundraising ratios, ceteris parabis.

Finally, given an estimate of the parameters in the Production Function and a method

for purging εdit from εit, it is possible to estimate the true fundraising efficiency εcit for each

charity in every time period.
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4 Data

I have extracted data from the Charity Commission (CC) Register, which holds yearly infor-

mation on all registered charities in England and Wales including their stated beneficiaries

or causes, and detailed financial information for all charities reporting over £500,000 in

total income. The data is made publicly available as a data dump and is updated every

month starting in 2007. This information is taken from the Statement of Financial Activ-

ities (SoFA) submitted to the CC by individual charities every financial year. I have used

these data extracts to construct a panel dataset, in which the charity identifier i and year t

define an observation.

This paper will focus on so called “Green Charities”, which are defined as those that list

Animals (code 111) or Environment/Conservation/Heritage (code 112) as one of their main

beneficiaries or causes. In practice, this definition characterises a large subsector of chari-

ties that describe themselves as supporting, perhaps among others, an environment-related

charitable cause; this may encompass climate change advocacy groups, wildlife protection

groups and renewable energy research charities in addition to animal rights charities to list

but a few.

In general, charities have two main income categories12:

1. Generated Income- including donations, in-kind gifts, investments, non-charitable sales

and legacies

2. Charitable Income- which includes sales resulting directly from providing charitable

services (e.g. care home fees)

Charities have three main sources of expenditure:

1. Costs associated with generating funds - including fundraising costs, investment man-

agement costs and trading costs associated with non-charitable sales

2. Charitable expenditure - which includes any spending deemed to impact the beneficia-

ries directly

3. Governance costs

Since many charity projects and personnel are multi-functional, charities are given rea-

sonable discretion as to the allocation of costs between different activities; for example, a

charity manager may split their time between fundraising activities, staff management and

charitable activities, hence their total wage costs are evenly split between the expenditure

categories.

12This information is taken from Charities SORP
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The Fundraising Revenue of charity i in time t, Fit, is defined as the total voluntary in-

come (donations, legacies and endowments) and activity generated funds. 13 The Fundrais-

ing Expenditure of charity i in time t, Bit is defined as the cost of raising voluntary income

and the trading costs, which include the operating costs associated with commercial (non-

charitable) activities like charity shops.

These definitions enable the fundraising activity (income and expenditure) to be isolated

from any other activities of the charity, strictly pertaining to activities that involve raising

voluntary income from the public. This includes commercial activities, but excludes any

activities associated with the charity’s beneficiaries, investment or governance activities.

The definition of Ait, the average fundraising expenditure of charity i’s rivals in time

t, requires strong assumptions as to which other charities constitute rivals to charity i in

time t and thus which other charities exclusively have the ability to influence the fundraising

decision-making (via strategic effects) and fundraising outcomes (via spillover effects) of

charity i in time t.

I assume three main criteria to identify which charities should constitute rival charities

to a given charity i in time period t:

1. Same area of operation14 as charity i

2. Same beneficiaries15 as charity i

3. Similar size to charity i in time t

The first two criteria are relatively non-contentious. The final criterion turns the def-

inition of Ait into a weighted-average of other charity’s fundraising expenditure, in which

the weights assigned to other charities critically depend on definition of size, the strength

of similarity between rivals and stability over time. I define rival charities to be those in

the same area of operation with the same beneficiaries, and at most ±30 places away from

charity i in the ranking of charitable expenditure in a given year t. The justification for

this is as follows: due to the high discretion given to charities as to the allocation of their

costs, there exist large incentives for charities to strategically choose their level of charitable

expenditure (Dang and Owens (2020)) in keeping with the charitable expenditure of other

charities they consider to be peers. This enables them to maintain a similar programme

ratio 16 to their peers thereby avoiding public scrutiny. In addition, a report17 from the

Charity Commission suggests that around 23% of charities collaborate with charities of a

13I am not able to distinguish between restricted income (which can only be spent on charitable activities)
and unrestricted income using this dataset, although typically the cost of raising unrestricted income is
significantly higher than raising restricted income.

14the areas of operation are either international or national
15the three groups of beneficiaries are only animals, only environment or both
16the ratio of charitable expenditure to total expenditure
17Strength in Numbers

12

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/284713/rs24text.pdf


similar size. It can be calculated18 that any given charity considers around 60 other charities

to be potential collaborators of a similar size on average. This justifies using similarity in

charitable expenditure as a measure of the distance between charities and ±30 places to

specify the maximum distance between rivals.

This definition implies the following about rival charities: (1) any charity has at most 60

and at least 30 rivals in any time period, (2) rivals may differ every year and (3) if charity i

and charity j are rivals at time t, they may have shared rivals and non-shared rivals.

Ait has also been constructed to only average the cost of raising voluntary income over

rivals, which excludes trading costs. This is because it is unlikely that trading activity (e.g.

operating charity shops) induces spillover and strategic effects across rival charities, hence

including these expenditures introduces unnecessary noise.

I use minimum total labour cost Cit instrument for fundraising expenditure to estimate

the Production Function19. Cit is calculated by multiplying the total number of employees

in charity i in time t by the national minimum/living20 wage in nominal terms, thereby

indicating the minimum possible wage bill for charity i in time t.

From the population of all registered Green Charities with over £500k in income, (ap-

proximately 2600 in total across the years 2007-2020) I have selected a sample of approxi-

mately 1700 charities across the years 2007-2015 in order to improve balance in the panel

and account for misreporting. This involves restricting the time period to 2007 - 2015, as

fundraising expenditure is not reported independently of other expenditure after 2015, and

selecting only charities above 14 years of age, so as to avoid new charities entering into the

dataset creating unnecessary panel imbalance. 21. Charities reporting negative fundraising

expenditures and revenues have been excluded, in addition to charities reporting financial

year lengths outside of the range (359, 371).

Table 1 summarises the four variables of interest in addition to the fundraising ratio

Rit = Fit
Bit

in the sample, whilst Table 2 provides a breakdown of the variation within and

between charities in the sample. With an average fundraising expenditure of around £670k

a year and revenue of around £2.5m a year, the charities in the sample raise £52 for every

18The report suggests that in 2010, 45% of small charities have collaborated at some point over the last
2 years, 51% of whom are collaborating with charities of a similar size. I assume that: (1) charities only
collaborate with potential collaborators with positive probability, where potential collaborators are defined
as having the same beneficiaries and area of operation, and (2) that the probability of collaborating with
another charity, given that they are a potential collaborator of a similar size, is equal to 1. Using the law
of conditional probability, this probability Pr(collaborate|potential collaborator of similar size) = 1 can

be rewritten as Pr(potential collaborator of similar size|collaborate).Pr(collaborate)
Pr(potential collaborator of similar size) = 1, where the first term in the

numerator is approximated as 0.51 and the second term in the numerator is approximated as 0.45 using
the data from the report. Assuming there are x potential collaborators of similar size out of a sample
of approximately 250 (the average number of other potential collaborators of a charity in a given year in
my sample), the probability in the denominator can be approximated as x

250 . Rearranging yields x = 57
which can be approximated as 60. However, this is analysis is approximate and therefore is only used as a
benchmark: I also consider variations of this definition in section 7.

19I discuss the relevance and validity of the Production Function in section 5
20The minimum wage was renamed the living wage in 2016
21the implications for sample selection bias will be discussed in section 5
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£1 spent on fundraising. Rival Expenditure (Ait) is on average £ 470k lower than own

charity fundraising expenditure (Bit) as Bit also includes trading costs, which are excluded

from Ait. Whilst the amount of between variation and within variation is similar for Fit
(Revenue), there exists substantially less variation in Bit (Fundraising Expenditure) and Ait
(Rival Expenditure) and Cit (Minimum total labour cost) within charities (across time) than

between different charities, suggesting that fundraising expenditure and staff costs may be

relatively stable across time.

Table 1: Sample Summary Statistics

Mean SD Min Max Number of observations
Bit (Expenditure) 669,999 3,147,112 0 57,938,000 9,794
Fit (Revenue) 2,492,707 10,677,858 0 494,871,392 9,801
Ait (Rival Exp.) 197,102 349,561 0 2,157,057 9,796
Rit (Ratio) 52 804 0 55,539 6,356
Cit (Min. labour cost) 391 1,455 0 39,523 9,800

Table 2: Standard Deviation between and within sampled charities

Standard Deviation
Variable Within Between Overall
Bit (Expenditure) 627,532 2,521,730 3,147,112
Fit (Revenue) 5,776,477 7,291,418 10,700,000
Ait (Rival Expenditure) 83,952 314,388 349,561
Rit (Ratio) 666 615 804
Cit (Min. labour cost) 397 1,142 1,455

Table 3 reports summary statistics for the population of registered Green Charities with

over £500k in total income. Relative to the population, the sampled charities appear to spend

more and gain less from fundraising on average, reporting a substantially smaller fundraising

ratio. However, the reduction in sample size (from around 2500 to 1700 charities) allows for

more balance, with the average number of time periods reported per charity increasing from

5.20 to 5.85.

Table 3: Summary Statistics for all Green Charities

Mean SD Min Max Number of observations
Bit (Expenditure) 638,159 3,080,555 -7,565 57,938,000 11,075
Fit (Revenue) 2,592,065 11,484,093 -30,743 637,600,000 16,990
Ait (Rival Exp.) 192,191 341,721 0 2,157,057 11,074
Rit (Ratio) 85 3,097 -147,258 182,134 7,074
Cit (Min. labour cost) 426 1,666 0 61,271 16,988
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Figure 3: Correlation between fit and bit
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Figure 4: Correlation between bit and ait

Figure 5: Correlation between fit and ait
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Figure 3, Figure 4 and Figure 5 show the pairwise scatter-plots of the pooled variables of

interest in logarithms22 and the associated histograms. There is a clear positive correlation

between all 3 variables, indicative of a possible causal link between them. In the next

section, I present an empirical strategy to identify the causal relationships specified by the

fundraising Production Function and fundraising Decision Function from section 3, using

the data outlined in this section.

22I have in fact applied the ln(1 + x) transformation to avoid generating unnecessary missing values at
x = 0. ln(1 + x) ≈ ln(x) when x is large.
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5 Identification Strategy

In this paper, I seek to consistently estimate the parameters in the system of equations

that together characterise the fundraising process. Recall from section 3 the Fundraising

Production Function and the Fundraising Decision Function respectively:

fit = ρ0 + ρ1fit−1 + β0bit + β1bit−1 + γ0ait + εit

bit = φ0 + φ1bit−1 + ψ1fit−1 + ω0ait + git

Where fit is the log of fundraising revenue, bit is the log of own fundraising expendi-

ture, ait is the average fundraising expenditure of rivals and εit, and its descendant git, are

mean-zero error terms assumed to be uncorrelated across charities. Both error terms can

be orthogonally decomposed further into a charity-specific (time-invariant) component ηi,

a time-specific subsector shock that affects all charities equally mt, and an idiosyncratic

component potentially correlated across time vit.

In this section, I first outline the threats to identification of the parameters in the models

above and then provide an empirical strategy that best mitigates these threats.

In the ideal experiment, fundraising budgets each year are randomly allocated to different

charities and revenue shocks are serially uncorrelated over time - this creates exogenous

variation in bit, fit and ait that can be used to identify all nine parameters. In reality,

strict exogeneity is unlikely to hold due to endogeneity and the models above are potentially

misspecified. I consider both of these threats in turn.

5.1 Threats to Identification: Endogeneity

The largest source of endogeneity arises from the fact that fundraising expenditure bit is a

choice variable, that is chosen to maximise net revenues in response to contemporaneous

productivity shocks and donor preference shocks - captured by εit (and its descendant git);

hence cov(bit, εit) 6= 0 creating endogeneity in the Production Function 23. For example,

increased extreme weather events leading to wildfires and other environmental degradation in

time t, could trigger an exogenous increase in donations to charity i, as donors become more

aware and sensitised to the issue of climate change. Simultaneously, charity i could respond

to the crisis by increasing fundraising efforts, attempting to capitalise on the heightened

sensitivity. This creates a positive dependence between bit and εit in the Production Function

and potential upward (omitted variable) bias on β0. To the extent that such shocks impact

all charities homogeneously, they could be fully captured by mε
t (the time-specific component

23This can also be seen directly from the construction of Boptit in Equation 2, in which the optimal level
of fundraising spending depends on E[Eit|XP ], where XP is the matrix of regressors in the Production
Function
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of εit)
24. Furthermore, to the extent that rivals respond to the donor preference shock in a

similar way, this endogenises ait in both the Production Function and the Decision Function.

Another source of endogeneity is due to serial correlation in the error terms εit and git.

For example, if sensitivity to climate change is correlated over time, this could make bit−1

and fit−1 endogenous in both the Production Function and the Decision Function as they

are related to the error terms through εit−1 and git−1 respectively. This creates so called

Nickell Bias (1980) on the lagged dependent variables in the Production Function and the

Decision Function.

A third source of endogeneity arises due to a reverse causal chain in the Production

Function: higher fundraising revenue can enable higher fundraising expenditure in the same

year, creating dependence between bit and εit in the Production Function 25. This can create

very strong upward bias on the β coefficients.

Measurement error in Fit or Bit can also be a source of endogeneity. If we assume that

each charity has a tendency to inflate (deflate) their revenues (expenditures) by a certain

proportion, and this tendency is possibly related to the size of a charity, then this could create

artificial dependence between regressors and error terms. To the extent that the propensity

to misreport is time-invariant, then this measurement error may be captured fully by ηεi
26.

The final source of endogeneity arises from sample selection bias, caused by selecting

observations on total income and by age.

The Charity Commission only requires charities with over £500k in annual income in

a given year to report a detailed financial breakdown, hence the dataset only records such

observations, allowing charities to drop in and out of the dataset depending on their total

24Variation in εit is not necessarily donor-driven; charity-driven variation such as changes in employee
quality, managerial quality or governance structure can create endogeneity and positive omitted variable
bias in a similar way.

25My specification of the Decision Function only allows for lagged enabling effects ψ1, not contemporaneous
enabling effects, with the latter creating a significant endogeneity concern

26

To see this, suppose we want to estimate the true fundraising production function:

F̃it = EitF̃
ρ1
it−1B̃

β0

it B̃
β1

it−1A
γ0
it

But we only observe the variables after they are artificially inflated or deflated relative to the true value

by a constant fraction Mi - specific to each charity (e.g. observed Fit = MF
i F̃it and observed fit = µFi + f̃it

in logs). Substituting the true variables for the observable counterparts and taking logs yields:

Fit
MF
i

= Eit

(
Fit−1
MF
i

)ρ1( Bit
MB
i

)β0
(
Bit−1
MB
i

)β1

Aγ0it

fit = ρ0 + ρ1fit−1 + β0bit + β1bit−1 + γ0ait + εit − (β1 + β0)µBi + (1− ρ1)µFi

Where the final unobservable term −(β1 + β0)µBi + (1 − ρ1)µFi represents the measurement error. This
creates a downward bias on the β coefficients and a positive bias on ρ1, but the direction becomes indeter-
minate if the measurement errors µi are related to the true variables. The same reasoning can be applied to
the Decision Function.
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income level. Since only 7% of registered charities in the UK reported an annual income of

over £500k in 2019 27, the threshold for selection into the dataset is potentially very strict.

Selecting on outcome creates a strong selection bias in the Production Function, and since git
is strongly dependant on εit, amounts to selection-on-unobservables in the Decision Function,

also creating selection bias. This results in a negative correlation between the error term and

the regressors, since for lower values of the regressors, the error must be higher on average

in order to be selected into the sample, creating a downward bias on the estimates28.

Selection bias is also created by selecting into the sample only those charities above 14

years of age, hereon “older” charities 29. To the extent that εit (and git) differ between older

and younger charities on average perhaps due to higher managerial quality captured by ηεi ,

or larger donor preference shocks captured by mε
t , this could create dependence between

error terms and regressors, creating upward bias in the estimated coefficients in the Decision

Function and the Production Function. 30

27BBC article
28

Downward bias in the coefficients in the Production Function can be represented mathematically using
selection term that is omitted from the equation and is negatively correlated with the regressors. I use an
indicator variable sit = 1 to denote selection into the sample (Aguirregabiria (2012)):

fit = ρ0 + ρ1fit−1 + β0bit + β1bit−1 + γ0ait + εit|sit=1

Where E[εit|sit=1|XP ] is equivalent to E[εit|XP , sit = 1], where XP is the matrix of regressors in the
Production Function. The condition sit = 1 can be rewritten as a condition on εit. Using NFit to represent
non-fundraised income to charity i in time t:

Fit +NFit > 500, 000⇔ Fit > 500, 000−NFit ⇔ fit > f(−NFit)⇔ εit > ε(−NFit,−XP )

Thus, the Production Function can be rewritten as:

fit = ρ0 + ρ1fit−1 + β0bit + β1bit−1 + γ0ait + λ(−NFit,−XP ) + ε̃it

Where:

λ(−NFit,−XP ) = E[εit|εit > ε(−NFit,−XP ), XP ]

ε̃it = εit|sit=1 − E[εit|εit > ε(−NFit,−XP ), XP ]

λ(−NFit,−XP ) is a selection term omitted from the regression but negatively correlated with the regres-
sors, creating downward bias in the estimated coefficients. I will refer back to the concept of a selection term
throughout this paper.

Selecting on total income similarly creates selection bias in the Decision Function, since it introduces the
selection term: λ(−NFit,−XP ) = E[git|εit > ε(−NFit,−XP ), XD] which is non-zero since git and εit are
highly correlated and decreasing in the regressors of the Decision Function(XD) since XD and XP are very
similar regressor matrices.

29See section 4 for the practical justification behind selecting these charities
30 In a similar way to selecting on total income, selecting on age corresponds to selection on unobservables,

creating the omitted selection term λ(ageit) = E[εit|ageit > 14, XP ] in the Production Function that is
increasing in the regressors, since age is positively correlated with the regressors, hence creating upward bias
in estimated coefficients.
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5.2 Threats to Identification: Misspecfication

The second threat to identification arises due to potentially mis-specifying the functional

form of the structural models. Largely for ease of interpretation, I have assumed the Produc-

tion Function and the Decision Function are linear in parameters, which represent constant

partial elasticities. This implicitly imposes continuity in the true Decision Function and

Production Function.

However, there may exist discontinuities in the marginal cost of fundraising: if high sunk

costs or entry barriers to fundraising exist, this could create large discontinuity at bit = 0.

For example, charities with lower brand recognition may face large sunk costs to fundraising

compared to charities with high brand recognition, since large initial fundraising expenditures

are required in order to generate a return. This forces these charities to spend either zero

or some large amount on fundraising, creating discontinuity at bit = 0 and resulting in

non-linearity, biasing the estimated coefficients in the Decision Function 31. There may also

be discontinuity at fit = 0 since increased public scrutiny may disincentivise charities to

report positive fundraising revenues, causing charities that receive low fundraising revenues

to report them as zero or to only rely on non-fundraised income, such as government grants

or investment income. This creates non-linearity in the true Production Function.

A naive solution is to ignore the observations at fit = 0 and bit = 0 and estimate the

models conditional-on-positive (COP) fundraising revenues in the Production Function and

fundraising expenditure in the Decision Function. This creates selection bias similar but

smaller in magnitude to the bias created by the £500k total income threshold, resulting in

downward bias in the estimated parameters of both models. 32.

31 This can be seen by examining the CEF under left-censoring at zero. Examining the CEF of the
Decision Function:

E[bit|XD] = 0.P r(bit = 0|XD) + E[bit|XD, bit > 0].P r(bit > 0|XD)

= E[bit|XD, bit > 0].P r(bit > 0|XD)

= E[bit|XD, bit > 0].P r(git > g(−XD)|XD)

= E[bit|XD, bit > 0].f(−XD)

Which is nonlinear in the regressors XD of the Decision Function even if the underlying CEF is linear.
32For example, in the Decision Function, selecting only observations with positive fundraising expenditures

bit introduces the selection term λ(−XD) = E[git|bit > 0, XD] = E[git|git > g(−XD), XD] in a similar way
to selecting on total income introduced in footnote 28. λ(−XD) is negatively correlated with the regressors
in the Decision Function hence introduces a downward bias on the estimated coefficients in the Decision
Function. Downward bias of a smaller magnitude is also created if the conditioning is probabilistic, since this
introduces the selection term: λ(−XD) = E[git|Pr(bit > 0) > p,XD] = E[git|Pr(git > g(−XD)) > p,XD],
which is also non-zero and decreasing in the regressors.
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5.3 Identifying the Fundraising Production Function

After identifying donor preference trends and shocks, e.g. wildfires, that affect all charities

equally to be a major source of omitted variable bias, the simplest solution is to include

time dummies in the regression equation, thus partitioning out any (purely time-variant)

variation that does not vary between charities. This transforms the error term εit such that

mε
t is purged, reducing the dependence between regressors and errors.

However, the largest sources of omitted variable bias are most likely charity specific

omitted variables captured by ηεi , such as managerial or employee quality33 hence an obvious

strategy would be to implement a within transformation or first difference transformation

on the regression equation to purge the charity specific component ηεi from the error term.

This may also solve the problems caused by measurement error, also plausibly captured by

ηεi
34, and significantly reduce serial correlation in the error term, reducing the dependence

between lagged variables and the error term. However, introducing a vεit−1 term into the error

via such a transformation creates so called Nickell Bias (1980) in the estimated coefficients

as it creates artificial correlation between the transformed error and the transformed lagged

dependent variable containing fit−1. Furthermore, in order to produce consistent estimates

using OLS on the transformed model, I require strict exogeneity E[vεit|ηεi ,mε
t , X

P ], which is

not satisfied due to the existence of a lagged dependant variable.

Selecting charities based on age may also induce selection bias 35. However, if age is

only related to charity specific factors such as managerial quality captured by ηεi or donor

preference shocks captured by mε
t , then purging mε

t and ηεi from the error term using time

dummies and a first-difference transformation can mitigate this selection bias 36.

In order to mitigate the selection bias caused by charities dropping in and out of the

sample based on total income, I have chosen to restrict the sample of charities further to

only those that report an average non-fundraising income over the time period of over £1m;

this effectively excludes charities from the sample that are close to the threshold for selection,

and are thus more likely to be selecting into the sample based on fundraising revenues. The

charities that remain in the sample have a larger (non-fundraised) income buffer to allow

them to remain in the sample regardless of the level of fundraising revenue. Although non-

fundraised income is not entirely independent of εit, selecting on non-fundraised income is

likely to significantly reduce selection bias 37.

33Sieg and Zhang (2012) use a Olley-Pakes control-function approach to estimate a fundraising production
function for Green Charities in the US, finding that managerial quality, measured by governance expenditure,
is a strong determinant of donations. Hence, I control for governance costs in the regression to capture any
confounding effect of managerial quality on fundraising revenues and fundraising expenditure.

34as outlined in footnote 26
35as outlined in footnote 30
36this requires that E[vεit|ageit, XP ] = 0
37 Selecting on a larger average non-fundraised income NFit attenuates the size of the selection term

λ(−NFit,−XP ) = E[εit|εit > ε(−NFit,−XP )] introduced in footnote 28, since it effectively forces
ε(−NFit, XP ) towards negative infinity. Assuming errors are mean zero normally distributed, this attenuates
the expected value of εit and hence the selection term.
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In order to mitigate the non-linearity caused by discontinuity in fundraising revenues at

fit = 0, I choose to restrict the sample to only those charities that report at least one positive

fundraising expenditure over the period bit > 0. This excludes charities from the sample that

may be disincentivised to report positive fundraising revenues, since they are not expected to

receive positive fundraising revenues with zero fundraising expenditure, and would therefore

avoid public scrutiny by reporting fit = 0. This also introduces selection bias 38 since positive

fundraising expenditures are likely to be induced or enabled by a larger εit, but this poses a

smaller threat to identification than a potential non-linear data-generating-process.

The final source of endogeneity not addressed is the existence of a reverse-causal chain:

higher fundraising revenues enabling higher fundraising expenditure in the same year, cre-

ating dependence between εit and bit. To address this, I propose using the minimum total

labour cost to charity i in time t (cit in logarithms) as instrumental-variable that creates

exogenous variation in fundraising expenditure bit
39. cit is the product of the total num-

ber of employees in charity i in time t and the national minimum/living wage in time t,

hence is the smallest possible wage bill of charity i in time t. Relevance is provided by

the fact that wage costs (associated with fundraising) often constitute a large proportion

of fundraising expenditures and the living wage is often binding across the charity sector;

hence cov(bit, cit) 6= 040. The exclusion restriction is likely to be satisfied since minimum

total wage costs are unlikely to affect fundraising revenues directly, only indirectly through

changes to the cost of fundraising expenditure. Instrument validity E[citεit] = 0 is harder to

justify as, although the national minimum/living wage is plausibly exogenous and satisfies

the exclusion restriction41, the number of employees (the most variable component of cit)

may be responsive to the same donor preference shocks and productivity shocks captured

by εit. For example, a man-made environmental disaster may trigger an exogenous increase

in donations to green charities, captured by mε
t , enabling or inducing a charity to hire more

employees. Another example is that charities with higher employee quality, captured by ηεi
may hire fewer employees.

Hence, I choose to impose a weaker but more reasonable validity condition E[citv
ε
it] = 0

thereby allowing the number of employees to vary with ηεi and mε
t , but maintaining that

charities cannot contemporaneously adjust employees to idiosyncratic shocks captured by

However, it also introduces a new selection term E[εit| NFit > £1m,XP ], which is plausibly non-zero
and related to the regressors, thus introducing bias. However, if NFit only depends on the charity-specific
productivity ηεi , then E[vεit| NFit > £1m,XP ] = 0 and purging ηεi from the error term through first
differencing will remove the new selection term. This is a plausible assumption: if non-fundraising revenue
and fundraising revenue come from different sources, then non-fundraised income may not be influenced by
time-specific shocks vεit and mε

t that influence fundraising revenue
38 Conditioning on positive fundraising expenditures introduces the selection term E[εit|b̄it > 0, XP ] which

is non-zero since b̄it is endogenous.
39the use of a valid instrument for ∆bit also enables a relaxation of the assumption of strict exogeneity to

the idiosyncratic error term vεit, allowing omitted variables and measurement error to vary within charities
over time.

40Relevance may be weakened by the fact that charities may reduce the non-labour fundraising expenditure
or reduce the number of employees to compensate for higher labour costs.

41This assumes that changes to the minimum wage do not effect donations to green charities directly.

23



vεit. This is plausible since it most likely takes longer than one year to adjust the number of

employees to idiosyncratic shocks to fundraising revenue.

Implementing an instrumental variables strategy using the moment condition E[citvit] = 0

requires removing ηεi andmε
t from the error term. Performing a first-difference transformation

and adding time dummies does exactly that, whilst additionally controlling for governance

spending govit yields the preferred regression specification for estimating the Production

Function:

∆fit = ρ0 + ρ1∆fit−1 + β0∆bit + β1∆bit−1 + γ0∆ait + α0∆govit +
T∑
1

αtm
ε
t + ∆vεit (6)

Transforming the Production Function in this way endogenises ∆fit−1 and ∆bit−1
42 but

also creates suitable candidate instruments for each endogenous variable. The transformation

in Equation 6 enables past differences to be used as instruments for differenced endogenous

variables (Anderson and Hsiao (1982)), presenting ∆fit−2 as a suitable instrument for ∆fit−1

and ∆bit−2 as an instrument for ∆bit−1. Past differences may predict current differences with

strong relevance even if the series is close to non-stationarity43. In addition, the instruments

may be excluded if they do not influence fundraising revenues independently of the endoge-

nous regressors, which requires that true brand effects and own fundraising effects are at

most one period lagged 44.

This involves utilising two more moment conditions: E[∆fit−2∆v
ε
it] = 0 and E[∆bit−2∆v

ε
it] =

0, which are valid if fit−2 and bit−2 are uncorrelated with vεit−1 and vεit is not serially corre-

lated45; together with E[cit∆v
ε
it] = 0, 46 this creates a just-identified case with 3 endogenous

variables and 3 instrumental variables, where ∆ait and govit are assumed to be exogenous

variables.

42This is because Equation 6 reintroduces serial correlation in the error term (as ∆vεit is correlated with
∆vεit−1 through the shared vεit−1) making the lagged dependant variable ∆fit (containing fit−1) endogenous
to the transformed error, resulting in Nickell bias (1980). In addition, reverse causality results in contempo-
raneous correlation between the error and fundraising expenditure, making ∆bit and ∆bit−1 endogenous to
the transformed error (containing both vεit and vεit−1).

43I also test fit−2 and fit−3 as instruments for ∆fit−1 and bit−2 and bit−3 for ∆bit−1, with levels as
instruments improving relevance if the data is stationary and longer lags as instruments improving validity
if there exists serial correlation in vεit

44i.e. β2 and ρ2 do not exist in reality.
45This assumes that any dependence between lagged variables and the error term is eliminated once the

fixed effects ηεi and mε
t are purged from the error.

46Note that this assumes vεit−1 and cit are also uncorrelated, which is stronger than contemporaneous
uncorrelatedness. Hence, I also test using cit−1 as an alternative instrument.
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Table 4 presents a summary of the threats to identification and the strategies designed

to mitigate them.

Table 4: Summary of Identification Strategy for estimating the Production Function

Threat to identification Solutions

Omitted variable bias

1. Time FEs
2. First Differencing
3. Control for governance spending
4. Instrumental Variables

Reverse causality 1. Instrumental variables

Measurement error
1. First differencing
2. Instrumental variables

Serial correlation
1. First differencing
2. Instrumental variables

Selection bias

1. Restricting sample to only charities with an average
non-fundraised income of over £1m
2. First differencing
3. Time FEs

Misspecification
1. Restricting sample to those reporting at least one positive
fundraising expenditure

My strategy for identifying the Decision Function is similar, involving the implementation

of a 2SLS procedure on the first-difference transformed model (employing lagged differences

as instruments) in addition to introducing sample restrictions that mitigate selection bias

and specification error. See subsection 10.1 for detailed outline of the strategy.
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6 Results

In this section I present and describe the results of my preferred 2SLS estimation strategies

alongside OLS estimates and summary statistics. In the next section I analyse and critique

the results, subjecting the results to several robustness checks.

6.1 Estimating the Fundraising Production Function

Table 5: Selected Sample Summary Statistics (Production Function)

Mean SD Min Max Number of observations
Bit (Expenditure) 1,782,576 5,467,322 0 57,938,000 3,013
Fit (Revenue) 4,973,977 14,592,970 0 152,343,008 3,013
Ait (Rival Exp.) 302,436 393,431 7,023 2,157,057 3,014
Cit (min. labour cost) 965 2,462 0 39,523 3,013

In Table 5 I summarise the four variables of interest, imposing the new sample restrictions

introduced in the previous section47 that attempt to mitigate selection bias and reduce

specification error. Comparing Table 1 with Table 5, it is clear that imposing the new

restrictions has produced a smaller sample of larger charities48, spending on average around

£ 1m more and raising £ 2.5m more on average. Imposing the fundraising expenditure

restriction b̄it > 0 has reduced the discontinuity at fit = 0, reducing the proportion of

observations at fit = 0 from 9.6% to 4.1%, which explains the higher average fundraising

revenue and expenditure in the sample. Imposing the non-fundraised income threshold

NFit > £1m excludes charities likely to drop in and out of the dataset by providing a large

enough income buffer, successfully improving balance in the panel: the average number of

time periods reported per charity increases from 5.85 to 8.46 out of 9.

In Table 6 I present initial OLS estimates of the fundraising elasticities using the Pro-

duction Function as a base model, where fit and fit−1 are the current and previous year

fundraising revenue respectively in logs whilst bit and bit−1 are the current and previous year

fundraising expenditure respectively in logs for a given charity i in time t. ait represents the

average fundraising expenditure of rivals to charity i in time t in logs. Comparing column 1

to column 2, the coefficients on the contemporaneous variables increase, whereas the coeffi-

cients on the lagged variables decrease as a result of the sample restrictions. The estimates

appear to be robust to the inclusion of time fixed effects in column 3 and to the inclusion

of governance expenditure as a control variable in column 4. Eliminating between variation

in column 5 attenuates the magnitude of the estimated coefficients, whilst significantly re-

ducing the R2 from 0.745 to 0.236 and the F-statistic from 297.1 to 8.264. In addition, the

47NFit > £1m and b̄it > 0
48the number of charities in the sample has decreased from 1671 to 354.
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coefficient on ait becomes insignificant, perhaps due to the lack of within-variation in average

rival spending outlined earlier in Table 2.

Recall from section 5 my preferred regression specification for estimating the Production

Function:

∆fit = ρ0 + ρ1∆fit−1 + β0∆bit + β1∆bit−1 + γ0∆ait + α0∆govit +
T∑
1

αtm
ε
t + ∆vεit (7)

Where ∆fit−1, ∆bit−1, ∆bit are endogenous regressors. Table 7 provides a summary of

the first stage regressions of each endogenous variable, represented by different columns, on

the instrument set Zit = [∆fit−2,∆bit−2, cit]. Whilst ∆fit−2 and ∆bit−2 appear to be relevant

instruments for ∆fit−1 and ∆bit−1, the external instrument minimum total labour cost in

levels cit appears to be weak. This results in a low F-statistic F = 1.89 and a low Sanderson-

Windmeijer multivariate F-test statistic SWF = 6.6349 in the first stage regression on the

endogenous variable ∆bit. In addition, the Kleibergen-Paap (rk) Wald F-statistic is 1.764,

hence we cannot reject the null hypothesis of weak identification 50.

Column 2 in Table 8 shows the 2SLS estimated coefficients of my preferred specification.

The results provide evidence of a strong brand effect of fundraising revenues ρ̂1 = 0.710. The

remaining coefficients are not statistically significant using clustered standard errors. The

next largest determinant of fundraising revenue is contemporaneous fundraising expenditure:

β̂0 = 0.544%. This is followed by estimated spillover effects γ̂0 = 0.157% and the estimated

lagged own fundraising effect β̂1 = −0.269%.

See subsection 10.2 for a description of the estimation results for the Decision Function.

49The Sanderson-Windmeijer multivariate F test of excluded instruments is more robust test-statistic for
the detection of weak instruments. See Sanderson and Windmeijer (2016) for details.

50the Kleibergen-Paap (rk) Wald F-statistic is chi-squared (1) distributed with a 10% critical value at
2.706.
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Table 6: OLS Estimates

(1) (2) (3) (4) (5)
Full sample Selected sample Time FEs Controls TwowayFEs

fit−1 0.800∗∗∗ 0.744∗∗∗ 0.745∗∗∗ 0.743∗∗∗ 0.364∗∗∗

(0.0125) (0.0293) (0.0292) (0.0294) (0.0629)

bit 0.179∗∗∗ 0.266∗∗∗ 0.267∗∗∗ 0.267∗∗∗ 0.235∗∗∗

(0.0180) (0.0307) (0.0307) (0.0307) (0.0398)

bit−1 -0.0959∗∗∗ -0.162∗∗∗ -0.164∗∗∗ -0.164∗∗∗ -0.0947∗∗∗

(0.0171) (0.0268) (0.0269) (0.0269) (0.0284)

ait 0.0443 0.137∗∗∗ 0.138∗∗∗ 0.129∗∗∗ -0.0409
(0.0230) (0.0365) (0.0369) (0.0378) (0.127)

Observations 7759 2648 2648 2648 2648
R2 0.761 0.744 0.745 0.745 0.236
Adjusted R2 0.761 0.744 0.744 0.744 0.232
F 2626.8 767.9 288.4 297.1 8.264

Standard errors in parentheses.

All estimates are interpreted as elasticities.

The model specifications are cumulative, with each building on the model specification to its left.

Standard errors are robust to arbitrary heteroskedasticity and autocorrelation within charities.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 7: First Stage Summary

(1) (2) (3)
∆fit−1 ∆bit ∆bit−1

∆fit−2 -0.245∗∗∗ 0.0745 0.0211
(0.0628) (0.0712) (0.0642)

∆bit−2 -0.0246 -0.0606 -0.261∗∗∗

(0.0324) (0.0405) (0.0440)

cit 0.0694 0.0445 -0.00627
(0.0439) (0.0430) (0.0414)

Observations 1926 1926 1926
R2 0.073 0.015 0.074
Adjusted R2 0.068 0.010 0.070
SWF 7.84 6.63 7.76
F 8.68 1.89 14.52

Standard errors in parentheses.

Each column corresponds to the first stage for the endogenous variable in the header.

Each row corresponds to a different instrument.

Standard errors are robust to arbitrary heteroskedasticity and autocorrelation within charities.

F is the F-statistic of the test for joint significance of the instruments.

SWF is the Sanderson-Windmeijer multivariate F test of excluded instruments.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 8: OLS and IV estimates of preferred regression specification for estimating the
Production Function

(1) (2)
OLS 2SLS (Preferred Strategy)

∆fit−1 -0.263∗∗∗ 0.710∗∗∗

(0.0522) (0.211)

∆bit 0.244∗∗∗ 0.554
(0.0333) (0.543)

∆bit−1 0.0423 -0.269
(0.0262) (0.179)

∆ait 0.000403 0.157
(0.123) (0.263)

Observations 2284 1926
R2 0.201 -0.748
Adjusted R2 0.198 -0.757
F 6.965 2.988

Standard errors in parentheses.

All estimates are interpreted as elasticities.

The model specifications are cumulative, with each building on the model specification to its left.

Standard errors are robust to arbitrary heteroskedasticity and autocorrelation within charities.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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7 Criticisms and Robustness Checks

7.1 Sample restrictions and selection bias

In this paper I impose two types of sample restrictions: the first set of restrictions introduced

in section 4 are needed to produce a sufficiently coherent dataset, whilst the second set of

restrictions introduced in section 5 are stronger and are aimed at mitigating selection bias (in

particular the NFit > £1m restriction) and misspecification bias (in particular the bit > 0

sample restriction used to estimate the Production Function and the legit > 0 restriction

used to estimate the Decision Function).

Examining column 1 and 2 of Table 6, and column 1 and 2 of Table 12, imposing the

sample restrictions appears to have an indiscernible effect on the OLS estimated coefficients,

which reflects the combined effect of both attenuating and introducing selection biases (which

themselves differ in direction). In addition, none of the estimates are statistically significant,

so it is impossible to separately identify the sources of selection bias even with further

deconstructions of the sample restrictions. See subsubsection 10.3.1 for a deeper analysis of

the effect of each restriction that utilises Table 19 and Table 18.

7.2 Mitigating endogeneity by first-differencing and including con-

trols

The inclusion of charity-specific dummies in column 5 of Table 6 and Table 12 significantly

attenuates the OLS estimated coefficients, which provides evidence that purging the ηi from

the error term significantly mitigates the upward bias on the coefficients caused by time-

invariant omitted variables, measurement error, serial correlation and selection bias. See

subsubsection 10.3.2 for a discussion on why OLS on a first-differenced or within-transformed

model will not yield consistent estimates.

The inclusion of governance spending does not appear to reduce positive omitted vari-

able bias: the coefficients are stable across column 3 to column 4 of Table 6. Table 16 in

section 10 indicates that governance spending, as a proxy for managerial quality, may not

have a statistically or economically significant impact on fundraising revenues. This directly

contradicts the findings of Sieg and Zhang (2012).

7.3 Mitigating endogeneity by including time-fixed effects

In section 5, I posited the existence of sector-wide donor preference shocks and trends that

influence fundraising revenues, plausibly captured by mε
t , which charities and their rivals

respond to by intensifying fundraising efforts- thereby confounding the effect of rival and

own fundraising expenditure in the Production Function. This justifies the inclusion of

time fixed effects in the Production Function. In addition, if these donor preference trends
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influence fundraising expenditures in the same way, then this confounds the effect of rival

expenditure on own expenditure in the Decision Function. This justifies the inclusion of

time fixed effects in the Decision Function. However, examining the results presented in

Table 6, Table 16, Table 12, Table 17, Table 20, Table 21, Table 22 and Table 23, it is

evident that trends and shocks may differ in magnitude and direction across charities, and

thus are not likely to be captured by single year dummies. See subsubsection 10.3.3 for a

deeper discussion as to the inclusion of time fixed effects in estimating both the Production

Function and Decision Function.

7.4 Choice of instruments

The fact that I cannot reject the null hypothesis that the estimates are weakly identified in

either the Decision Function nor Production Function models poses a significant problem for

the internal validity of the estimates; in particular, IV estimators can be biased, t-tests may

fail to control size and conventional IV confidence intervals may too often fail to cover the true

parameter (Andrews et al. (2019)). In addition, the validity conditions depend on (arguably

strong) assumptions about the decision-making process and behaviour of the error terms.

Hence, I propose replacing instruments in my preferred set: ZP = [∆fit−2 ∆bit−2 cit] for

estimating the Production Function and ZD = [∆fit−2 ∆bit−2] for estimating the Decision

Function with suitable alternatives that may strengthen the relevance of the instrument

set and provide valid alternatives if any instruments are deemed to be invalid. However,

examining Table 28 to Table 35, it is evident that almost all alternative instrument sets

provide a weaker identification of the parameters in the Production Function and Decision

Function. See subsubsection 10.3.4 for a deeper analysis of the alternative instrument sets;

included is a discussion as to why the estimates presented in column 1 of Table 33 and

column 3 of Table 28 may be more reliable estimates of the causal effect than my initial

estimates presented in Table 14 and presented in Table 8 respectively.

7.5 Different Ait average rival expenditure definitions

Another set of robustness checks pertain to the definition of average rival expenditure Ait,

in particular whether the estimated spillover effects and strategic effects are consistently

positive and relatively stable across slight variations in the weights given to other charities

(of whom expenditure is averaged over). I find that estimated spillover and strategic effects

are relatively stable and positive across different rival definitions, although most of the

estimates are not statistically significant, so conclusive evidence for their existence is not

guaranteed. In addition, accurately identifying which charities are considered to be rivals

by charity i in time t may not be possible without further qualitative or survey data. See

subsubsection 10.3.5 for a deeper analysis of the robustness of positive estimated spillover

and strategic effects, that utilises Table 24 to Table 27.
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7.6 Heterogeneity across subgroups

I also estimate the Production Function and Decision Function for different subgroups within

my sample, to test the plausibility of the assumption of constant causal effects (elasticities)

across different charities. I find that the causal estimates differ greatly between subgroups,

which indicates that the estimates obtained in Table 8 and Table 14 may represent an

average causal effect across substantially different subgroups, which in itself is arguably not

a useful estimand. Heterogenous estimates could also indicate that the specification of the

fundraising production function and decision function vary across different charities, perhaps

due to different objective functions or fundraising techniques, which raises misspecification

concerns. See subsubsection 10.3.6 for a detailed discussion on the heterogeneity across

subgroups and an examination of Table 36 and Table 37.

7.7 Statistical significance and standard errors

Out of the seven estimated parameters of interest presented in Table 8 and Table 14, only

the estimated brand effects ρ̂1 are statistically significant at the 95% level using my preferred

2SLS strategy. As shown in column 3 of Table 16 and Table 17, the results are also not sta-

tistically significant when HAC(1) standard errors are applied, which are robust to arbitrary

AR(1) serial correlation across time and arbitrary heteroskedasticity51. This is likely due

to the weak first stage of my chosen instrument sets, neither of which I can reject the null

hypothesis of weak identification for. In addition, due to the nature of the non-profit sector,

the factors that affect the choice of fundraising spending and level of donations are poten-

tially infinitely dimensional, hence the large standard errors could reflect the amount of noise

in the data. Misspecification and heterogeniety can also weaken the statistical significance

of the estimated parameters.

51Observations between different charities are assumed to be independent
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8 Discussion

In section 6, I use two instrumental variables strategies to estimate seven parameters of

interest, represented graphically in Figure 1, that taken together characterise the fundraising

process; in particular, the factors that determine how much a charity decides to spend on

fundraising in a given year and how much is raised as a result. In this section I discuss the

interpretation of the estimates and how they can be used to estimate the true fundraising

efficiency.

8.1 Interpretation

Assuming my preferred empirical strategy allows for exact causal identification, estimated

coefficients can be interpreted as a weighted average of partial elasticities52.

The results presented in column 2 of Table 8 show that a 1% increase in fundraising

expenditure by a given charity in a given year, causes a 0.554% increase in fundraising

revenues in the same year, ceteris parabis53. This implies that for the green charity in

the sample with the median fundraising ratio (2.62), £1 spent on fundraising generates an

individual marginal return of £1.45 the same year54. Table 9 shows the contemporaneous

individual marginal returns to fundraising, evaluated at the median charity in each year.

Table 9: Marginal Returns to fundraising for median charity (£) in each year

Year Marginal Returns to fundraising for median charity (£)
2007 1.499
2008 1.445
2009 1.405
2010 1.521
2011 1.461
2012 1.388
2013 1.421
2014 1.499
2015 1.558

The negative coefficient on lagged fundraising expenditures bit−1 in Table 8 (β̂1 = −0.269)

contradicts my initial hypothesis about the individual returns to fundraising being spread

over at least a two-year period. Instead, it could plausibly indicate a differential causal effect

52Partial elasticities are averaged over different complier subpopulations corresponding to the different
instruments used, and averaged along the length of a possibly nonlinear causal function (Angrist and Pischke
(2009)). Assuming homogeneity and linearity in causal effects across complier populations, the estimates
can be interpreted as partial elasticities.

53This is consistent with fundraising elasticity estimates from Arulampalam et al. (2015), Sieg and Zhang
(2012), Khanna et al. (1995), Posnett and Sandler (1989) which range from 0.183 - 0.626.

54The parameter estimates are interpreted as elasticities, hence the individual marginal return to fundrais-
ing for charity i in time t: ∂Fit

∂Bit
= Fit

Bit
β̂0 = Ritβ̂0 is directly proportional to the fundraising ratio of charity

i in time t.
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of fundraising expenditure in the long run compared to the short run. For example, whilst

revenues in the same year increase, revenues fall the year after due to a lagged signalling

effect of fundraising spending: if donors conflate high fundraising expenditures with low

charitable spending, then they may respond negatively to high fundraising expenditures in

the long run. However, it is likely that the fundraising effects are incident over a period of

less than a year, hence I would require higher frequency data to observe a true β1 parameter.

The estimated spillover effects γ̂0 and estimated strategic effects ω̂0 taken together char-

acterise the two types of interactions between rival charities in the fundraising process.

The results indicate that a 1% increase in the average expenditure of rivals to charity i

in time t leads to a 0.157% increase in fundraising revenues to charity i and induces a

0.0467% increase in fundraising expenditure by charity i in the same year, ceteris para-

bis. The total elasticity of rival spending on fundraising revenues is equal to the direct

(spillover effect) plus the indirect effect through increased own fundraising efforts55 equal to

γ̂0+ω̂0β̂0 = 0.157+0.0467∗0.554 = 0.18356, in which the direct effect accounts for 86% of the

total elasticity. Positive spillover effects and small positive strategic effects together imply

that although competition for donors is driving charities to compete on fundraising expendi-

ture, fundraising techniques are inclusive57 generating collective returns that are higher than

the individual returns to fundraising58.

The results also show a strong enabling effect ψ̂1 = 0.180 of revenue received by charity

i in the previous year on the fundraising expenditure of charity i, which could suggest that

charities are financially constrained, such that their available funds (which are a function

of revenue received in previous years) are a binding constraint on the optimal fundraising

expenditure, leading to a strong dependence between past fundraising revenue and current

expenditure. In addition, relative to own fundraising effects, high estimated brand effects

(ρ̂1 = 0.710) and persistence effects (φ̂1 = 0.305) suggest that the fundraising decision and

production processes are relatively stable over time. Persistence in expenditure may be

largely due to rigidity in labour costs, whilst strong brand effects may be explained by donor

inertia59 or a signalling effect60.

The discussion thus far has assumed that the estimates are internally valid, i.e. consistent

and estimated to a reasonable degree of uncertainty. However, there are several reasons to

doubt the accuracy and precision of the estimates. Firstly, 6 of the estimated coefficients

are not (statistically) significantly different from zero, and this result is robust to different

estimates of the standard error. Hence, the existence of the true parameters and their

55See Equation 4
56This point estimate is only mentioned qualitatively as its uncertainty is difficult to quantify, and it is

likely very imprecisely estimated. In addition, the estimates are taken from two different samples hence may
not be valid for the same subset of charities.

57In that they engage new donors rather than steal their rivals existing donors
58Recall Equation 3
59donors reluctance to switch charities or cancel charitable standing orders
60If donors associate high existing or past income with reliability, then they may be encouraged to donate

in the future; thus, past revenues influence present revenues via a brand effect
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magnitude is very uncertain61. Secondly, sample selection bias, heterogeneity and weak IV

issues represent the largest threats to identification that persist even after implementing my

preferred empirical strategy62.

In addition, it is likely that the results would differ significantly when estimated over a

more recent time period, different subsector, and a sample of younger and smaller charities.

For example, younger and smaller charities may experience much smaller individual returns

to fundraising β as they lack the brand recognition of older charities. Charities in more

mature subsectors, such as health and housing, may experience smaller or negative spillover

γ effects as the total donor population (or potential donable funds) are not growing over

time. More recent data may yield higher returns to fundraising β, due to the growth in

online and social media fundraising campaigns, which can generate much larger returns,

and returns over a longer time-span. Furthermore, government austerity measures post-

2015 and the COVID19 Pandemic in 2020 have caused charities to become more financially

constrained, which may accentuate enabling effects ψ in the data, in addition to ushering in

a selection effect, in which the charities that can afford to fundraise (and stay alive), become

more frugal and selective with the fundraising projects they engage in, leading to higher

observable returns to fundraising β.

8.2 Estimating the true fundraising efficiency

Recall from section 3 the derivation of the bias in the fundraising ratio rit, the ratio of

fundraising revenue to expenditure, in logarithms as a measure of the true fundraising effi-

ciency εcit:

rit − εcit = εdit + (β0 − 1)bit + (β1 + ρ1)bit−1 + γ0ait + ρ1rt−1

Which assumes that εit - the unobservable shocks and determinants of fundraising rev-

enue - can be decomposed linearly into a charity-driven component εcit and a donor-driven

component εdit. εdit represents the factors taken to be exogenous63 by the charity, such as

donor preferences and external events, whereas εcit represents factors under the control of the

charity, which are assumed to capture the true fundraising efficiency of a charity.

First, using the estimates of the fundraising Production Function parameters obtained

in the previous section, I obtain the residuals ε̂it using:

ε̂it = rit − (β̂0 − 1)bit − (β̂1 + ρ̂1)bit−1 − γ̂0ait − ρ̂1rit−1

61See section 7 for a deeper discussion on the lack of statistical significance
62See section 10 for a deeper discussion on selection bias, heterogeneity and weak IV issues.
63Exogenous in the economic sense, not econometric sense. Charities may still respond to εdit making it a

source of endogeneity in the causal model.
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Next, I regress these residuals ε̂it on year dummies and beneficiary dummies64 which are

assumed to capture all unobservable variation in fundraising revenue purely attributable to

donor preferences and external shocks, to obtain the new residuals that capture remaining

variation in ε̂it, unexplained by and uncorrelated with these exogenous regressors, assumed

to be determined by the charity themselves65. This allows me to decompose the original

residuals ε̂it into the (fitted) donor driven unobservables ε̂dit and the (residual) charity driven

unobservables ε̂cit, which provide a best estimate of the true fundraising efficiency of a char-

ity66.

Figure 6: Bias in the fundraising ratio as a measure of true fundraising efficiency (rit − εcit)
in logs

64which indicate the other listed beneficiaries of the charity e.g. the advancement of health, eradication
of poverty, support for arts/heritage/culture, advancement of education etc

65The exogeneity of sector-wide shocks or trends and a charity’s listed beneficiaries is a relatively strong
assumption. It assumes that charity managers take their listed beneficiaries as given - determined by the
charitable objectives set forth in their mission statement - unable to be changed in a way that may be
correlated with the inherent efficiency of the charity. Hence any variation in donations that is correlated
with a particular beneficiary is assumed to represent a stronger donor preference or public sensitivity towards
that cause and is hence captured by εdit (and is independent of εcit). For example, if green charities that also
work towards the eradication of poverty experience higher unexplained fundraising revenue εit on average,
then this due to a stronger donor preference for green charities that also work to eradicate poverty, and not
because green charities that also work towards the eradication of poverty are any more or less inherently
fundraising efficient than charities that do not. In addition, any shock or trend in unexplained fundraising
revenue that is common to all charities in a particular year is assumed to be the result of an exogenous donor
preference shock or trend captured by εdit, and not the result of a sector-wide shock or trend in inherent
fundraising efficiency (hence is independent of εcit). This means that on average, charities cannot become
inherently more or less efficient over time by assumption

66The regression of ε̂it on year dummies and beneficiary dummies yields an adjusted-R2 of 0.0505, with
an F-statistic of 65.09, implying that the donor-driven influence on the residual ε̂it is non-negligible
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Figure 6 provides a density plot of the estimated bias in logarithms (rit − ε̂cit), which

suggests that on average, the fundraising ratio overestimates the true fundraising efficiency

for the charities in the sample67. This has important implications for the use of the fundrais-

ing ratio as a measure of financial performance, advocated for by the NCVO and Charity

Navigator. From Equation 5, due to the high estimated brand effect ρ̂1 and positive esti-

mated spillover effect γ̂0, the fundraising ratio may be positively biased by high fundraising

expenditure in the year before, high fundraising expenditure of rivals and a higher ratio the

year before, whereas diminishing returns to current fundraising expenditure β̂0 < 1 implies

that high fundraising expenditure can negatively bias the fundraising ratio in the same year.

However, the fundraising ratio appears to remain a relatively strong predictor68 of the

fundraising efficiency εcit, hence I argue that despite the biases, charity managers and evalu-

ators should continue to use the fundraising ratio as an (imperfect) measure of fundraising

efficiency. In fact, with a greater understanding of the main limitations (biases) in the

fundraising ratio, it may become a more useful and informative tool for evaluating the effi-

ciency of fundraising performance. However, fundraising efficiency itself may be of secondary

importance to fundraising optimality, which considers the extent to which charities are com-

mitting an optimal amount on fundraising. See subsection 10.4 for a deeper discussion on

optimality.

Figure 7: Correlation between charity age and εcit

Figure 7 shows a negative correlation between the age of a charity and the average

67Note that the bias is expressed in logarithms, hence the units do not reflect the magnitude of bias in
raw terms. A more rigorous statistical analysis would be needed to estimate the magnitude and direction of
the bias in absolute terms.

68The Pearson correlation coefficient is 0.605 which is significant at the 5% level.
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fundraising efficiency. This could be because older charities may be less likely innovate in

the fundraising techniques they use to capture donors; for example, younger charities may

be more likely to utilise social media. Another explanation could be that younger charities

have more agile governance structures and are more transparent, which is more attractive

to donors. The phenomenon of older charities being less fundraising efficient could explain

the positive bias in the fundraising ratio for charities in the sample presented in Figure 6,

since sampled charities are on average 7 years older than the average green charity in the

population.
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9 Conclusion

In this paper, I have introduced a system of equations that capture the decision-making

process and the revenue generation process of fundraising. Taken together, the fundraising

Production Function and Decision Function allow me to separately estimate the individual

returns to fundraising and the collective returns, which account for the interplay between ri-

val charities. Exploiting plausibly exogenous variation in minimum total labour costs, driven

by changes in the national minimum wage, as well as lagged revenues and expenditures, I

am able to use an instrumental-variables strategy to identify seven parameters of interest,

including own fundraising effects (β0 and β1), spillover effects (γ0) and strategic effects (ω0)

depicted graphically in Figure 8 69.

Figure 8: Complete model

I find that a 1% increase in fundraising expenditure by a given charity in a given year

leads to a 0.554% (β̂0) increase in fundraising revenues in the same year, ceteris parabis,

which corresponds to a £1.45 individual marginal return - for the charity in the sample

with the median fundraising ratio (ratio of fundraising revenue to expenditure). This point

estimate is consistent with other estimates of fundraising elasticity in the literature70.

I also find that a 1% increase in the average expenditure of rivals to charity i in time t

leads to a 0.157% (γ̂0) increase in fundraising revenues to charity i, and induces a 0.0467%

(ω̂0) increase in fundraising expenditure by charity i in the same year. This corresponds

to a total effect of charity i‘s rivals fundraising expenditure on charity i‘s own fundraising

revenues in time t equal to the direct effect γ̂0 alongside the indirect effect (β̂0ω̂0) through a

change in the own fundraising efforts of charity i: 0.157+0.0467x0.554= 0.183%. The direct

effect and indirect effects are depicted as the two different paths from Ait to Fit in Figure 8.

By accounting for the positive strategic and spillover influences of rival charities, it is evident

that the collective returns to fundraising are larger than the returns an individual charity

could achieve by fundraising in isolation.

69Fit represents the fundraising revenue (donations) of a charity i in time t, Bit represents the fundraising
expenditure (budget) of charity i in time t and Ait represents the average fundraising expenditure of charity
i‘s rivals in time t.

70See Arulampalam et al. (2015), Sieg and Zhang (2012), Khanna et al. (1995), Posnett and Sandler (1989)
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Finally, I develop a framework for characterising the magnitude and direction of bias

in the fundraising ratio (the ratio of fundraising revenue to expenditure) as a measure of

the true fundraising efficiency of a charity, and use the results to estimate the fundraising

efficiency for the charities in my sample. I find that higher fundraising expenditure the year

before, a higher ratio in the year before, higher rival fundraising expenditure and more “pop-

ular” beneficiaries can positively bias the fundraising ratio, whilst higher current fundraising

expenditure can negatively bias the fundraising ratio, as a measure of the fundraising ef-

ficiency of a charity. For the charities in my sample, the fundraising ratio overestimates

the true efficiency on average, and older charities tend to have lower average fundraising

efficiency than younger charities. This could be explained by the different fundraising tech-

niques employed by older and younger charities, with younger charities being more likely to

engage in digital fundraising campaigns and utilise social media, which can generate much

higher returns due to its reach.

However, there are several reasons to doubt the accuracy and precision of the estimates.

Firstly, 6 of the estimated coefficients are not (statistically) significantly different from zero,

and this result is robust to different estimates of the standard error. Hence, the existence

and magnitude of the true parameters, in addition to the direction of average bias in the

fundraising ratio, is very uncertain. Secondly, sample selection bias, heterogeneous causal

effects and weak IV issues represent large threats to consistency that persist after imple-

menting my preferred identification strategy. Hence, the estimated coefficients are likely

asymptotically biased.

Furthermore, the results likely have limited external validity, as my selected sample of

charities differ from the population of charities in several ways. Using a sample of younger

charities may yield much smaller individual returns to fundraising as they lack the brand

recognition of older charities whilst using a sample of charities in a more mature subsectors

such as health may yield smaller or negative spillover effects, as fundraising simply results in

donor stealing. Using more recent data may yield higher returns to fundraising, due to the

growth in online and social media fundraising campaigns, which can generate larger returns

over a longer time-span. Furthermore, the COVID19 Pandemic in 2020 may have ushered

in a selection effect, in which only the most fundraising efficient charities stay afloat and can

afford to fundraise, leading to higher estimated returns to fundraising across the population.

Nonetheless, the novel theoretical framework, identification strategy and results provide

a useful benchmark for future researchers, as well as charity managers and regulators that

seek a deeper understanding of the fundraising process, the role of rivalry in the non-profit

sector, and the caveats to employing the fundraising ratio as a measure of the efficiency of

fundraising. The fundraising ratio is just one of several indicators of financial performance

used by regulators and charity evaluators, which is arguably a level of performance secondary

to the level of social impact performance of the charity itself.
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10 Appendix

10.1 Identifying the Fundraising Decision Function

Selecting into the sample charities with over £500k in total income also creates selection bias

in the Decision Function, since it amounts to selecting on εit which is highly correlated with

the error term git
71. However, restricting the sample of charities to only those reporting

over £ 1m in average non-fundraised income over the period may not be as effective in

mitigating selection bias in the Decision Function as in the Production Function. This

is because average non-fundraising revenue may constitute a relevant omitted variable in

the Decision Function, hence is strongly correlated with git. This is because average non-

fundraising income is strongly correlated with the regressors fit−1 and bit−1 and can enable

higher fundraising expenditure bit. Although this may reduce the selection bias caused by

the total income threshold, it may introduce selection bias of a similar magnitude, effectively

replacing one non-random selection criteria with another 72 However, I choose to impose the

sample restrictions for the sake of continuity in the external validity between the estimated

coefficients of the Production Function and the Decision Function.

The bias caused by attempting to fit a non-linear data-generating process into a linear

model, due to discontinuity at bit = 0, cannot be solved by dropping charities from the sample

that report zero fundraising expenditures, since this introduces selection bias 73. Hence I

choose to restrict the sample to charities that report at least one positive legacy income

over the period legit > 0, which is largely driven by high brand recognition. This is because

charities with higher brand recognition should face lower entry barriers to fundraising, hence

any amount of fundraising expenditure can expect to generate a return 74. This would

ensure fundraising expenditures are more continuous at bit = 0. Although this introduces

some selection bias 75, this poses a smaller threat to identification than a potential non-linear

data-generating-process76.

71This introduces the selection term: λ(−NFit,−XP ) = E[git|εit > ε(−NFit,−XP ), XD] which is non-
zero since git and εit are highly correlated and decreasing in the regressors of the Decision Function(XD)
since XD and XP are very similar regressor matrices.

72

Selecting on average non-fundraised income attenuates the selection term introduced by the total in-
come threshold E[git| εit > ε(−NFit,−XP ), XD] whilst simultaneously introducing a new selection term
E[git|NFit > £1m,XD], which is non-zero and likely increasing in the regressors. A naive solution is to con-
trol for NFit in the Decision Function, thereby capturing any confounding effect of NFit on the regressors,
and purging NFit from the error term git. However, it is not clear if NFit is itself also consequence of the
regressors, in which case it constitutes a bad control (Angrist and Pischke (2009)) and conditioning on it
would reintroduce selection bias.

73see footnote 31
74This cannot be said for charities with lower brand recognition, since a larger amount of fundraising

may be required to generate a return, forcing these charities to spend either zero or some large amount on
fundraising

75 conditioning on positive legacy income introduces the selection term E[git|legit > 0, XD] which is
non-zero since positive legacy income can enable higher git, and is increasing in the regressors.

76see footnote 31
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In a similar way to estimating the Production Function, including time dummies in the

Decision Function can partition out any variation that does not vary between charities,

which include sector-wide fundraising expenditure trends captured by mg
t , the time-specific

component of the error term git. This can mitigate endogeneity since the fundraising trends

may be driven by the trend in public sensitivity to climate change (as charities seek to

capitalise on the increased sensitivity) and hence can act as an omitted variable, confounding

the effect of rivals charity fundraising expenditure ait on own charity fundraising expenditure

bit
77.

The charity-specific component of the error term ηgi is likely to capture time-invariant

characteristics such as area of operation and governance structure; these variables may di-

rectly influence fundraising expenditure, and also be correlated with fundraising revenue,

confounding the effects of fit−1 and bit−1 on bit. Hence, implementing a Within or First-

Difference transformation on the Decision Function would purge ηgi from the error term,

mitigating the bias caused by these time-invariant omitted variables 78.This would also mit-

igate endogeneity caused by measurement error, likely captured by ηgi
79 and significantly

reduce serial correlation in the error term. Purging ηgi from the error term also reduces the

selection bias caused by selecting charities on age 80.

First-differencing and including time dummies yields my preferred regression specification

for estimating the parameters of the Decision Function:

∆bit = φ0 + φ1∆bit−1 + ψ1∆fit−1 + ω0∆ait +
T∑
t=1

αtm
g
t + ∆vgit (8)

However, Equation 8 results in so-called Nickell Bias (1980), as it creates artificial correla-

tion between the transformed error, containing vgit−1, and the transformed lagged dependent

variable containing bit−1. Hence I propose using an instrumental variables strategy that

instruments the endogenous ∆bit−1 with ∆bit−2 and the plausibly endogenous ∆fit−1 with

∆fit−2
81, taking ait to be exogenous to the error ∆vgit. This utilises two moment conditions

E[∆fit−2∆v
g
it] = 0 and E[∆bit−2∆v

g
it] = 0 which are valid if fit−2 and bit−2 are uncorrelated

77 However, it is also likely that sector-wide fundraising expenditure trends captured by mg
t are the

consequence of rising rival fundraising expenditure not just the cause, due to vicious cycle of fundraising
(Rose-Ackerman (1982)) outlined in section 2. If the trend in fundraising expenditure that emerges is more
the consequence of rival spending than the cause, then controlling for time fixed effects may constitute a
bad-control (Angrist and Pischke (2009)) conditioning on which introduces bias

78It is very likely that such omitted variables also vary across time, hence are captured by vgit. If the
omitted variables are serially correlated across time, then fit−1 and bit−1 become endogenous (related to the
error term via vgit−1).

79as outlined in 26
80This is only valid if we assume that whilst E[ηgi |ageit, XD] 6= 0, E[vgit|ageit, XD] = 0 i.e. idiosyncratic

fundraising expenditure shocks do not vary with age
81I also test fit−2 and fit−3 as instruments for ∆fit−1 and bit−2 and bit−3 for ∆bit−1, with levels as

instruments improving relevance if the data is stationary and longer lags as instruments improving validity
if there exists serial correlation in vgit
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with vgit−1 and vgit is not serially correlated82. In addition, the instruments may be excluded

if they do not influence fundraising expenditure independently of the endogenous regressors,

which requires that true persistence effects and enabling effects are at most one period lagged
83.

Table 10 presents a summary of the threats to identification for the Decision Function

and the strategies designed to mitigate them.

Table 10: Summary of Identification Strategy for estimating the Decision Function

Threat to identification Strategies to mitigate threat to identification

Omitted variable bias
1. Time FEs
2. First Differencing
3. Instrumental Variables

Measurement error 1. First differencing

Serial correlation
1. First differencing
2. Instrumental variables

Selection bias
1. Restricting sample to only charities with an average
non-fundraised income of over £1m

Misspecification
1. Restricting sample to those reporting at least one
positive legacy income over the period

82This assumes that any dependence between lagged variables and the error term is eliminated once the
fixed effects ηgi and mg

t are purged from the error.
83i.e. φ2 and ψ2 do not exist in reality.
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10.2 Estimating the Fundraising Decision Function

Table 11: Selected Sample Summary Statistics (Decision Function)

Mean SD Min Max Number of observations
Bit (Expenditure) 2,410,363 6,475,238 0 57,938,000 1,673
Fit (Revenue) 7,621,303 19,102,482 0 152,343,008 1,674
Ait (Rival Exp.) 404,318 483,964 7,023 2,157,057 1,675

In Table 11, I summarise the 3 variables of interest, imposing the sample restrictions

introduced in the previous section84 that attempt to mitigate selection bias and reduce

specification error. Comparing Table 1 with Table 11, it is evident that imposing the new

restrictions has produced a smaller sample of larger charities85, spending on average around

£ 2m more and raising £ 5m more on average. This is largely due to the legacy income

restriction ¯legit > 0 that restricts the sample of charities to those with large enough brand

recognition to face continuous marginal costs of fundraising86. This reduces the proportion

of observations at bit = 0 from 35% to 15%. Imposing the non-fundraised income threshold

NFit > £1m excludes charities likely to drop in and out of the dataset by providing a large

enough income buffer, successfully improving panel balance: increasing the average number

of time periods reported per charity in the sample from 5.85 to 8.62 out of 9.

Table 12 provides OLS estimates of the parameters in the Decision Function, using the

Decision Function as a baseline model. Imposing the sample restrictions in column 2 attenu-

ates the estimated coefficients on fit−1 and ait, whilst increasing the estimated coefficient on

bit−1. Including time fixed effects in column 3 makes a negligible difference to the estimates.

Eliminating between variation in column 5 attenuates the magnitude of the estimated co-

efficients, whilst significantly reducing the R2 from 0.892 to 0.160 and the F-statistic from

1087.4 to 4.060. In addition, the coefficients on ait and fit−1 become insignificant.

Recall my preferred regression specification for estimating the Decision Function from

section 5:

∆bit = φ0 + φ1∆bit−1 + ψ1∆fit−1 + ω0∆ait +
T∑
t=1

αtm
g
t + ∆vgit (9)

Where ∆bit−1 and ∆fit−1 are endogenous regressors. Table 13 provides a summary of the

first stage regressions of each endogenous variable, represented by different columns, on the

instrument set Zit = [∆fit−2,∆bit−2]. ∆fit−2 and ∆bit−2 appear to be weakly relevant instru-

84NFit > £1m and ¯legit > 0
85the number of charities in the sample has decreased from 1671 to 193.
86This restriction replaces the weaker bit restriction used to model the Production Function and hence

the Decision Function is estimated over a smaller sample of larger charities compared to the estimated
Production Function.
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ments for ∆fit−1 and ∆bit−1, since the F-statistics and Sanderson-Windmeijer multivariate

F-test statistics are low in the first stages of both endogenous variables. In addition, the

Kleinbergen-Paap Wald (rk) F-statistic is 1.76, hence we cannot reject the null hypothesis

of weak identification at the 10% level of significance87

Column 2 in Table 14 shows the 2SLS estimated coefficients of my preferred specification.

None of the coefficients are statistically significant using clustered standard errors. The

results show a strong persistence effect of fundraising expenditures (φ̂1 = 0.305%), and a

strong enabling effect of lagged fundraising revenues (ψ̂1 = 0.180%). The results also show

a small and positive estimated strategic effect: ω̂0 = 0.0467%.

87the Kleinbergen-Paap Wald (rk) F-statistic is chi-squared (1) distributed with a 10% critical value at
2.706.
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Table 12: OLS Estimates of Elasticities

(1) (2) (3) (4)
Full sample Selected sample Time FEs Twoway FEs

fit−1 0.0789∗∗∗ 0.0497∗ 0.0469∗ 0.0392
(0.00950) (0.0233) (0.0227) (0.0438)

bit−1 0.873∗∗∗ 0.929∗∗∗ 0.931∗∗∗ 0.386∗∗∗

(0.00756) (0.0195) (0.0192) (0.0947)

ait 0.0657∗∗ 0.0296 0.0306 0.296
(0.0224) (0.0462) (0.0444) (0.179)

Observations 7759 1472 1472 1472
R2 0.820 0.892 0.892 0.160
Adjusted R2 0.820 0.891 0.892 0.154
F 12613.6 2750.6 1087.4 4.060

Standard errors in parentheses.

All estimates are interpreted as elasticities.

The model specifications are cumulative, with each building on the model specification to its left.

Standard errors are robust to arbitrary heteroskedasticity and autocorrelation within charities.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 13: First Stage Summary

(1) (2)
∆fit−1 ∆bit−1

∆fit−2 -0.351∗∗∗ 0.0369
(0.104) (0.0307)

∆bit−2 0.0852∗∗ -0.261∗∗

(0.0311) (0.0839)
Observations 1078 1077
R2 0.129 0.096
Adjusted R2 0.122 0.089
SWF 8.63 10.46
F 5.75 6.48

Standard errors in parentheses.

Each column corresponds to the first stage for the endogenous variable in the header.

Each row corresponds to a different instrument.

Standard errors are robust to arbitrary heteroskedasticity and autocorrelation within charities.

F is the F-statistic of the test for joint significance of the instruments.

SWF is the Sanderson-Windmeijer multivariate F test of excluded instruments.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 14: OLS and 2SLS estimates of preferred regression specification for estimating the
Decision Function

(1) (2)
OLS 2SLS (preferred strategy)

∆fit−1 0.0444 0.180
(0.0325) (0.194)

∆bit−1 -0.261∗∗ 0.305
(0.0828) (0.384)

∆ait 0.0297 0.0467
(0.0978) (0.106)

Observations 1272 1076
R2 0.072 -0.251
Adjusted R2 0.065 -0.261
F 1.853 1.263

Standard errors in parentheses.

All estimates are interpreted as elasticities.

The model specifications are cumulative, with each building on the model specification to its left.

Standard errors are robust to arbitrary heteroskedasticity and autocorrelation within charities.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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10.3 Robustness checks continued

10.3.1 Sample restrictions and selection bias

Columns 3 and 4 of Table 18 and Table 19 separate the effect of the two restrictions and

report the estimated 2SLS coefficients. For both Table 18 and Table 19, comparing column

3 with the preferred results in Table 14 and Table 8 reveals no clear effect of the restriction

designed to mitigate the downward selection bias caused by the total income threshold88.

This is due to the fact that the non-fundraised income restriction also introduces positive

selection bias in both cases, although more so in the Decision Function coefficients 89. In

addition, for both Table 18 and Table 19, comparing column 4 with the preferred results

in Table 14 and Table 8 reveals no clear effect of the restrictions designed to mitigate the

misspecification bias. This is because the two restrictions bit > 0 and legit > 0 introduce

upward selection bias, since bit is positively correlated with the error term εit and legit
is positively correlated with the error term git

90, in addition to introducing a downward

selection bias, since they effectively impose a conditional-on-positive interpretation of the

parameters91creating a similar bias to that caused by the total income threshold.

Column 2 in both Table 18 and Table 19 report the Tobit estimates on the full sample

that account for potential left-censoring at zero - which is evident from the histograms in

Figure 3 and Figure 4. However, these estimates are most likely inconsistent as the Tobit

estimator requires that the models are specified with all relevant explanatory variables -

which is unlikely to hold.

10.3.2 Mitigating endogeneity by first-differencing and including controls

The inclusion of charity-specific dummies in column 5 of Table 6 and Table 12 significantly

attenuates the OLS estimated coefficients, which provides evidence that purging the ηi from

the error term significantly mitigates the upward bias on the coefficients caused by time-

invariant omitted variables, measurement error, serial correlation and selection bias. How-

ever, a within transformation does not entirely mitigate Nickel bias as the existence of a

lagged dependent variable fit−1 violates strict exogeneity by construction. Hence, the esti-

mates in column 5 are invalid. Nickel Bias is perhaps more prevalent in column 1 of Table 8

and Table 14 which present the OLS estimates of Equation 6 and Equation 8 respectively.

The negative coefficients on the lagged dependent variables indicate that a first-difference

transformation may in fact accentuate Nickel bias92 providing further justification for the

use of an instrumental-variables strategy.

88See footnote 28
89See footnote 37 and 72 for more details.
90See footnotes 38 and 75
91See the naive solution and a probabilistic selection threshold outlined in footnote 31.
92For example, in estimating the Production Function, differencing constructs negative correlation between

∆fit−1 and ∆vεit, via the −vεit−1 term, creating significant downward bias on the ∆fit−1 coefficient.
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10.3.3 Mitigating endogeneity by including time-fixed effects

Including time dummies into the Production Function base model in column 3 of Table 6

appears to marginally increase the coefficients, whilst including time dummies in my pre-

ferred specification presented in column 2 of Table 16 only appears to mitigate positive

omitted variable bias on the estimated spillover effects γ̂0 and are not individually statisti-

cally significant. This contradicts my predictions regarding the direction of omitted variable

bias caused by sector-wide shocks captured by mε
t . Assuming that such an omitted variable

exists, i.e. an upward trend in public sensitivity toward climate change driving a trend in

fundraising revenues and expenditures describes a plausible confounding effect, the bigger

question arises as to whether this can be mitigated by including time dummies. Table 20

and Table 21 present the magnitude of time trends and shocks to fundraising revenue for

different sized charities, measured by quintile of the average fundraising revenue distribu-

tion. It appears that whilst the smallest and largest quintiles are experiencing a downwards

trend in fit, the middle quintiles experience an upward trend93. In addition, relative to

post-2015 levels, sector-wide changes in fundraising revenue appear to differ widely across

quintiles. Thus, it is likely whilst the donor preference shocks may be sector-wide, the effect

on fundraising revenue differs widely across charities, hence purging mε
t from the error will

not fully mitigate omitted variable bias.

The theoretical justification for including time dummies in the estimation of the Decision

Function is weaker than in the Production Function, since the type of variation captured by

mg
t is not clear94. However, column 1 and 2 of Table 17 show that including time dummies

in the Decision Function decreases the estimated strategic effect ω̂0, plausibly mitigating

positive omitted variable bias. In addition, trends in fundraising expenditures appear to

be more homogenous, with all quintiles except the lowest showing a large upward trend, as

shown in Table 22 and Table 23. Hence, although the theoretical justification is weaker, the

results appear to justify the inclusion of time fixed effects in the Decision Function.

10.3.4 Choice of instruments

First, I propose replacing ∆fit−2 and ∆bit−2 in the preferred set of instruments for the twice

lagged levels fit−2 and bit−2 as instruments for the endogenous variables ∆bit−1 and ∆fit−1

in both the Production Function and Decision Function. Examining Table 29, it is clear

that despite higher F-statistics, the lower SWF-statistics indicate that twice lagged levels

do not improve the relevance of the twice differenced instruments95 in Production Function

estimation. However, Table 34 shows that twice lagged levels are far better performing

instruments for the endogenous ∆bit−1 and ∆fit−1 variables in the Decision Function: I can

93although, only for the 2nd largest quintile is the trend statistically significant. Hence there is much
uncertainty as to the exact fundraising revenue trend in the data.

94See footnote 77
95in addition, the Kleinberg-Paap F statistic is 0.01, which approaches perfect irrelevance.
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reject the null that the system is weakly identified96. Hence the 2SLS results in column 1

of Table 33 may be more reliable than my initial estimates presented in Table 14. I also

propose replacing cit in my preferred instrument set with ∆cit in the 2SLS estimation of the

Production Function. I hypothesised that the existence of a reinforcing reverse causal chain

(higher revenues enabling higher expenditure) would create upward bias on the estimated

coefficients in the Production Function; however, comparing column 1 to column 2 in Table 8,

my preferred instrumental-variables approach has not appeared to mitigate this bias, since

the estimated coefficients have increased. Examining column 3 of Table 28, it appears that

using ∆cit in place of cit does appear to mitigate the bias caused by reverse causality, as the

estimate of own fundraising elasticity falls compared to the OLS estimates of Equation 6

presented in Table 8. In addition, examining the first stage results presented column 3

of Table 31, this appears to greatly increase the SWF-statistics compared to the preferred

instrument set, however I am still unable to reject the null hypothesis of weak identification97.

Nonetheless, the 2SLS results in column 3 of Table 28 may be more reliable than my initial

estimates presented in Table 8.

Further lagged instruments offer valid alternatives if any instruments in the preferred set

are deemed to be invalid or plausibly violate the exclusion restriction. For example, twice

differenced instruments ∆fit−2 and ∆bit−2 are invalid if (1) there exists serial correlation in

either vgit or vεit
98 or (2) past values of fundraising revenue or expenditure influence future er-

rors99. Hence, I conduct the Arellano and Bond test for autocorrelation in second differences

using the residuals obtained from estimating Equation 6 and Equation 8 via OLS. In both

cases I am able to reject the null of AR(2) serial correlation in differences, and equivalently

AR(1) serial correlation in levels at the 10% level of significance100 hence it is likely that

criterion (1) is not violated. However, criterion (2) is not easily testable, hence I propose

replacing ∆fit−2 and ∆bit−2 in the preferred set of instruments with the thrice lagged levels

fit−3 and bit−3 as instruments for the endogenous variables ∆bit−1 and ∆fit−1 in both the

Production Function and Decision Function. However, the first stage results in Table 30 and

Table 35 show that in both cases thrice lagged levels are too weak to consider valuable. I

also propose replacing cit in my preferred instrument set with cit−1 in estimating the Pro-

duction Function since the existing moment condition: E[cit(v
ε
it − vεit−1)] = 0 requires that

cit and vεit−1 are uncorrelated. This may not be plausible since charities may adjust their

employee numbers, and hence cit, to idiosyncratic fundraising revenue shocks in the previous

year vεit−1
101. However, upon examining the first stage in Table 32, the new instrument set

96Since the Kleinberg-Paap Wald rk F-Statistic is 5.31 which exceeds the 5% critical value at 3.841.
97the Kleinberg-Paap Wald rk F-Statistic is 1.26 which does not exceed the 10% critical value at 2.706
98For example, if vgit is AR(1) serially correlated such that vgit = kvgit−1 + eit, the moment condition:

E[∆fit−2∆vgit] = E[(fit−2 − fit−3)(vgit − (k − 1)vgit−2 − eit−1)] 6= 0 since fit−2 and vgit−2 are correlated by

construction.
99For example, if fit−2 affects vit−1, then the two are correlated and hence the moment condition:

E[∆fit−2∆vgit] = E[(fit−2 − fit−3)(vgit − v
g
it−1)] 6= 0.

100the test statistics are -2.53 and -1.78, with the OLS residuals from Equation 8 showing slightly larger
autocorrelation.
101I propose the more plausible moment condition: [cit−1(vεit − vεit−1)] = 0 that only requires that charities
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appears too weak to consider.

10.3.5 Different Ait average rival expenditure definitions

Table 15: Different Ait definitions

Variable
Grouping by area
of operation and
beneficiaries

Distance Measure

Minimum
length
of time
charities
can be rivals
(stability)

Maximum
distance
between rivals
(exclusivity)

Top 10
largest

80 yes Charitable exp. 1 year 30 no
81 yes N/A 9 years N/A no
82 yes Fundraising rev. 1 year N/A yes
83 yes Fundraising rev. 1 year 30 no
84 yes Charitable exp. 1 year 10 no
85 yes Charitable exp. 1 year 40 no
86 yes Charitable exp. 5 years 30 no
87 yes Charitable exp. 9 years 30 no
88 yes Charitable exp. 3 years 30 no

Table 15 summarises 8 other algorithms used to construct the weights; all other charities

that satisfy the criteria in the table are given a weight equal to 1. For example, 80 gives

my preferred definition, 83 uses fundraising revenue as a measure of distance, 86 only allows

rivals to change at least every 5 years. In addition, 81 does not differentiate charities based

on distance, hence is the most inclusive, and 82 only averages the fundraising expenditure

of the top 10 largest charities by fundraising revenue in each rival group- defined by their

beneficiaries and area of operation- which makes it conceptually distinct from the other

definitions of a rival charity102. I have implicitly assumed that it is possible to accurately

infer which charities are considered to be rivals by charity i in time t using observable

financial data, however, greater accuracy may not be possible without further qualitative or

survey data.

Table 24 and Table 25 show that estimated spillover effects are positive across all def-

initions, ranging from of 0.00395 (which corresponds to the definition of rival as the top

10 largest charities in a particular rival group) to 0.723 (which corresponds to the use of

fundraising revenue as a measure of distance103). Furthermore, the estimates appear to be

more stable across the small time and distance adjustments in 84-88 ranging in point elastic-

ity estimates from 0.151 to 0.344, providing evidence of robustness with respect to the choice

cannot adjust employee numbers to fundraising shocks in the same year
102This is the definition of Ait used in Arulampalam et al. (2015) to ascertain the direction of spillover

effects amongst international development charities
103This estimate is abnormally high, mostly likely because dependence between fit and ait is baked into

the definition of a rival, hence the correlation, and 95% significance, is largely artificial
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of time stability and exclusivity. However, the estimates are not statistically significant so

conclusive evidence for their existence is not guaranteed.

Table 27 and Table 26 show that estimated strategic effects are positive and relatively

stable across all definitions except 84 (which corresponds to a point elasticity estimate of

-0.106) otherwise ranging from 0.349 to 0.0615. 84 differs from my preferred specification in

that it is more exclusive, restricting the maximum distance between rivals to 10; a negative

coefficient on 84 could indicate that strategic effects become negative when rivals reach a

certain proximity to each other - the distance between rivals falls below a certain threshold.

However, the estimates are not statistically significant, so we are unable to identify a causal

relationship between exclusivity and the direction of strategic effects.

10.3.6 Heterogeneity across subgroups

Table 37 and Table 36 present the estimated coefficients for certain subgroups in the selected

sample, in particular for exclusively animal focused charities (1), exclusively environment

related charities (2), international charities (3) and exclusively national charities(4)104. The

estimates appear to differ significantly across subgroups, with National charities reporting

strongly positive estimated own fundraising effects, and International charities reporting

negative own fundraising effects as shown in column 3 and 4 of Table 36. In addition,

Environment charities report weakly positive estimated strategic effects and Animal charities

report weakly negative estimated strategic effects, as shown in column 1 and 2 of Table 37.

This suggests that the causal estimates obtained in Table 8 and Table 14 may represent an

average causal effect across substantially different subgroups, which in itself is not a useful

estimand.

The heterogeneity in causal estimates across subgroups is an oft encountered problem

in the non-profit literature largely due to divergent organisational objectives between char-

ities. I hypothesised that by focusing on fundraising, an inherently economic phenomenon,

I would be able to uncover a set of behavioural equations common to all charities, albeit

within a particular subsector. However, this assumes that charities are able to separate their

fundraising objective, static net revenue (πit = Fit − Bit) maximisation, from their main

charitable objectives, such that charities are indifferent between different fundraising meth-

ods that generate the same net revenue. This is unlikely to hold in reality. For example,

some charities may be unable or unwilling to engage in fundraising techniques such as street-

chugging whilst others may only be able to raise money at certain times or events during the

year leading to differently specified fundraising production functions and decision functions

across charities. Furthermore, the fundraising objective itself may differ across charities;

for example, it may be the case that smaller charities choose the fundraising expenditure

budget Bit to maximise (gross) fundraising revenues Fit, in order to maximise their brand

presence, whilst larger charities choose the fundraising budget to maximise long-run net

104The pairs, [(1) and (2)] and [(3) and (4)] are together mutually exclusive but not collectively exhaustive.
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revenues (Vi = πit + δπit+1 + δ2πit+2 + . . . ).

Pooling together charities with differently specified production and decision functions

creates identification problems pertaining to misspecification bias105.

10.4 Optimality

Optimal fundraising expenditures are defined as the level of fundraising expenditure that

maximises a charity’s net revenues πit = Fit−Bit, such that an additional pound of fundrais-

ing expenditure generates one pound in revenue. Optimality ensures that charities are max-

imising their available funds, and by extension, maximising the welfare of their beneficiaries.

Therefore, a case could be made that fundraising optimality is a more important measure

of financial performance than efficiency, since a charity can become more fundraising effi-

cient and spend a sub-optimal amount on fundraising. However, fundraising optimality is

harder to determine for charity managers and evaluators, since it requires knowledge the

true fundraising production function of each charity.

105I decide not to address this threat to identification in the main section, by distinguishing between
charities with different fundraising objectives and techniques, mainly due to a lack of data and a concrete
theoretical framework.
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10.5 Tables

Key:

f it 1 = fit−1

f it 2 = fit−2

f it 3 = fit−3

b it 1 = bit−1

b it 2 = bit−2

b it 3 = bit−3

a it 1 = ait−1

a it 2 = ait−2

a it 3 = ait−3

f it d = ∆fit
b it d = ∆bit
a it d = ∆ait
f it d 1 = ∆fit−1

f it d 2 = ∆fit−2

f it d 3 = ∆fit−3

b it d 1 = ∆bit−1

b it d 2 = ∆bit−2

b it d 3 = ∆bit−3

a it d 1 = ∆ait−1

a it d 2 = ∆ait−2

a it d 3 = ∆ait−3

Specifications are not cumulative. Cluster (within charity) standard errors are reported

unless stated otherwise. Results presented are estimated using my preferred 2SLS strat-

egy unless stated otherwise. F-Statistics are reported alongside SWF-Statistics where weak

instruments are a concern. The Sanderson-Windmeijer multivariate F test (SWF) of ex-

cluded instruments is more robust test-statistic for the detection of weak instruments. See

Sanderson and Windmeijer (2016) for details.
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Table 16: Full output for the Production Function

(1) (2) (3)
Preferred specification no Time FEs HAC(1) SEs

f it 1 d 0.710∗∗∗ 0.691∗∗ 0.710∗

(0.211) (0.211) (0.341)

b it d 0.554 0.522 0.554
(0.543) (0.542) (1.087)

b it 1 d -0.269 -0.242 -0.269
(0.179) (0.177) (0.277)

a it d 0.157 0.201 0.157
(0.263) (0.261) (0.440)

y2007 0 0
(.) (.)

y2008 0 0
(.) (.)

y2009 0 0
(.) (.)

y2010 0.276 0.276
(0.190) (0.201)

y2011 -0.249 -0.249
(0.268) (0.540)

y2012 0.134 0.134
(0.271) (0.491)

y2013 0.00773 0.00773
(0.204) (0.206)

y2014 -0.0789 -0.0789
(0.242) (0.542)

exp gov d 5.51e-08 7.76e-08 5.51e-08
(0.00000138) (0.00000137) (0.00000193)

cons -0.00219 0.00894 -0.00219
(0.135) (0.0233) (0.263)

N 1926 1926 1926
R2 -0.748 -0.679 -0.748
adj. R2 -0.757 -0.683 -0.757
F 2.988 3.285 0.937

Standard errors in parentheses

All estimates are interpreted as elasticities
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.00156



Table 17: Full output for the Decision Function

(1) (2) (3)
Preferred specification no Time FEs HAC(1) SEs

f it 1 d 0.180 0.191 0.180
(0.194) (0.198) (0.194)

b it 1 d 0.305 0.302 0.305
(0.384) (0.385) (0.364)

a it d 0.0467 0.0495 0.0467
(0.106) (0.109) (0.109)

y2007 0 0
(.) (.)

y2008 0 0
(.) (.)

y2009 0 0
(.) (.)

y2010 0.177 0.177
(0.212) (0.209)

y2011 0.273 0.273
(0.183) (0.182)

y2012 0.114 0.114
(0.172) (0.172)

y2013 -0.0288 -0.0288
(0.226) (0.204)

y2014 0.215 0.215
(0.168) (0.174)

cons -0.144 -0.0186 -0.144
(0.158) (0.0438) (0.158)

N 1076 1076 1076
R2 -0.251 -0.259 -0.251
adj. R2 -0.261 -0.262 -0.261
F 1.263 0.558 0.721

Standard errors in parentheses

All estimates are interpreted as elasticities
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 18: Changing the sample for the Production Function

(1) (2) (3) (4)

Full sample Tobit No NFit restriction No bit restriction
main
Delta f it-1 0.319 0.200∗∗∗ 0.767∗ 0.251

(0.227) (0.0263) (0.313) (0.152)

Delta b it 1.356 0.142∗∗∗ 0.329 1.065
(1.532) (0.0234) (0.744) (1.106)

Delta b it-1 -0.438 0.0876∗∗∗ -0.219 -0.206
(0.510) (0.0234) (0.279) (0.244)

Delta a it 0.00416 0.146 0.0345 0.161
(0.192) (0.125) (0.0981) (0.339)

Observations 5165 6838 4062 2557
R2 -2.542 -0.855 -0.784
Adjusted R2 -2.549 -0.860 -0.791
Pseudo R2 0.003
F 0.324 1.441 0.719

Standard errors in parentheses

cluster standard errors are used
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 19: Changing sample for estimating the Decision Function

(1) (2) (3) (4)

Full sample Tobit No NFit restriction No legit restriction
main
Delta f it-1 -0.146 -0.0503 0.117 -0.105

(0.106) (0.0507) (0.138) (0.134)

Delta b it-1 0.321∗ 0.470∗∗∗ 0.361 0.196
(0.134) (0.0437) (0.330) (0.158)

Delta a it -0.0132 0.351 -0.0228 -0.261
(0.144) (0.232) (0.118) (0.232)

Observations 5165 6839 2240 2557
R2 -0.242 -0.242 -0.110
Adjusted R2 -0.244 -0.246 -0.114
Pseudo R2 0.003
F 2.205 1.027 1.427

Standard errors in parentheses

Cluster standard errors are used
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 20: Differintial fundraising revenue time trends between Fit quintiles

(1) (2) (3) (4) (5)
Lowest quintile 2nd quntile 3rd quintile 4th quntile highest quintile

year -0.0618 0.0679∗∗ 0.0138 0.0184 -0.0109
(0.146) (0.0239) (0.0149) (0.0369) (0.0433)

Constant 132.1 -123.7∗ -13.96 -22.67 37.99
(293.4) (48.03) (29.95) (74.29) (87.15)

Observations 200 281 325 426 442
R2 0.001 0.028 0.003 0.001 0.000
F 0.179 8.075 0.863 0.248 0.0627

Standard errors in parentheses

Each column corresponds to different quintile of average fundraising revenue.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 21: Differintial fundraising expenditure time trends between Bit quintiles

(1) (2) (3) (4) (5)
Lowest quintile 2nd quntile 3rd quintile 4th quntile highest quintile

year -0.0906 0.117∗ 0.0307 0.0658 0.0561∗∗

(0.0938) (0.0496) (0.0293) (0.0349) (0.0207)

Constant 185.0 -224.7∗ -48.92 -118.7 -97.07∗

(188.7) (99.81) (58.98) (70.18) (41.69)
Observations 340 334 331 340 328
R2 0.003 0.017 0.003 0.010 0.022
F 0.932 5.591 1.095 3.553 7.313

Standard errors in parentheses

Each coloumn corresponds to different quintile of average fundraising expenditure.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 22: Differintial fundraising revenue time shocks between Fit quintiles

(1) (2) (3) (4) (5)
Lowest quintile 2nd quntile 3rd quintile 4th quntile highest quintile

y2007 0.110 0.394 -0.0889 0 0
(0.736) (0.362) (0.419) (.) (.)

y2008 0 0.389 -0.140 0.0565 0.259
(.) (0.355) (0.418) (0.273) (0.452)

y2009 -0.415 0.0403 -0.153 0.131 0.375
(0.719) (0.358) (0.415) (0.274) (0.453)

y2010 0.582 -0.0899 -0.0777 -0.0978 0.479
(0.721) (0.356) (0.418) (0.274) (0.457)

y2011 0.168 0 0.149 -0.193 0.568
(0.719) (.) (0.419) (0.273) (0.453)

y2012 0.193 0.253 0.0749 0.0558 0.958∗

(0.721) (0.362) (0.421) (0.272) (0.453)

y2013 0.288 0.236 0 0.140 0.574
(0.711) (0.358) (.) (0.272) (0.452)

y2014 0.261 0.347 -0.163 0.173 0.781
(0.716) (0.362) (0.419) (0.271) (0.452)

y2015 -0.187 0.451 -0.0121 -0.101 0.611
(0.719) (0.360) (0.424) (0.273) (0.453)

Constant 9.511∗∗∗ 12.33∗∗∗ 13.54∗∗∗ 14.42∗∗∗ 15.29∗∗∗

(0.514) (0.256) (0.299) (0.194) (0.324)
Observations 605 601 611 595 601
R2 0.004 0.008 0.002 0.006 0.010
F 0.328 0.607 0.134 0.431 0.778

Standard errors in parentheses

Each coloumn corresponds to different quintile of average fundraising revenue.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 23: Differintial fundraising expenditure time shocks between Bit quintiles

(1) (2) (3) (4) (5)
Lowest quintile 2nd quntile 3rd quintile 4th quntile highest quintile

y2007 0.0177 -0.915 0.0355 -0.104 0
(1.061) (0.551) (0.322) (0.384) (.)

y2008 -0.408 -0.821 -0.287 -0.381 0.109
(1.047) (0.551) (0.324) (0.384) (0.230)

y2009 0 -0.575 0.157 -0.727 0.156
(.) (0.547) (0.326) (0.384) (0.231)

y2010 -0.258 -0.249 0.180 0 0.304
(1.047) (0.551) (0.324) (.) (0.233)

y2011 -0.375 0.142 0.332 0.0659 0.288
(1.040) (0.554) (0.322) (0.384) (0.231)

y2012 -0.452 0.188 0.315 0.102 0.297
(1.047) (0.562) (0.322) (0.384) (0.230)

y2013 -0.918 -0.241 0.0355 0.0897 0.374
(1.027) (0.554) (0.324) (0.384) (0.230)

y2014 -0.578 -0.0807 0.400 0.281 0.413
(1.027) (0.554) (0.328) (0.384) (0.230)

y2015 -0.706 0 0 -0.0546 0.506∗

(1.033) (.) (.) (0.386) (0.230)

Constant 3.254∗∗∗ 11.57∗∗∗ 12.68∗∗∗ 13.63∗∗∗ 15.41∗∗∗

(0.740) (0.397) (0.232) (0.273) (0.164)
Observations 340 334 331 340 328
R2 0.004 0.026 0.021 0.029 0.023
F 0.175 1.094 0.877 1.257 0.952

Standard errors in parentheses

Each column corresponds to different quitile of average fundraising expenditure.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 24: Using different rival definitions in my preferred specification for the Production
Function

(1) (2) (3) (4)
a it81 d a it82 d a it83 d a it84 d

f it 1 d 0.713∗∗∗ 0.714∗∗∗ 0.490∗ 0.710∗∗∗

(0.209) (0.209) (0.191) (0.211)

b it d 0.563 0.561 0.523 0.535
(0.551) (0.563) (0.509) (0.519)

b it 1 d -0.272 -0.273 -0.255 -0.264
(0.183) (0.186) (0.169) (0.174)

a it81 d 0.343
(0.402)

a it82 d 0.00395
(0.271)

a it83 d 0.723∗

(0.366)

a it84 d 0.151
(0.215)

N 1926 1926 1924 1926
R2 -0.766 -0.766 -0.250 -0.723
adj. R2 -0.775 -0.775 -0.257 -0.732
F 3.021 3.069 10.42 3.042

Standard errors in parentheses

All estimates are interpreted as elasticities
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 25: Using different rival definitions in my preferred specification for the Production
Function continued

(1) (2) (3) (4)
a it85 d a it86 d a it87 d a it88 d

f it 1 d 0.703∗∗∗ 0.716∗∗∗ 0.714∗∗∗ 0.716∗∗∗

(0.210) (0.210) (0.209) (0.209)

b it d 0.519 0.565 0.556 0.555
(0.518) (0.550) (0.559) (0.554)

b it 1 d -0.261 -0.273 -0.272 -0.273
(0.173) (0.184) (0.183) (0.183)

a it85 d 0.344
(0.321)

a it86 d 0.293
(0.235)

a it87 d 0.136
(0.251)

a it88 d 0.261
(0.230)

N 1926 1926 1926 1926
R2 -0.692 -0.773 -0.759 -0.760
adj. R2 -0.701 -0.782 -0.768 -0.769
F 3.193 2.947 2.936 3.190

Standard errors in parentheses

All estimates are interpreted as elasticities
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 26: Using different rival definitions in my preferred specification for the Decision
Function

(1) (2) (3) (4)
a it81 d a it82 d a it83 d a it84 d

f it 1 d 0.183 0.186 0.122 0.185
(0.195) (0.195) (0.193) (0.196)

b it 1 d 0.305 0.318 0.273 0.306
(0.385) (0.385) (0.366) (0.386)

a it81 d 0.335
(0.182)

a it82 d 0.349∗

(0.173)

a it83 d 0.199
(0.131)

a it84 d -0.106
(0.0989)

N 1076 1076 1076 1076
R2 -0.252 -0.265 -0.179 -0.253
adj. R2 -0.261 -0.274 -0.188 -0.262
F 1.410 1.375 1.352 1.503

Standard errors in parentheses

All estimates are interpreted as elasticities
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 27: Using different rival definitions in my preferred specification for Decision
Function continued

(1) (2) (3) (4)
a it85 d a it86 d a it87 d a it88 d

f it 1 d 0.180 0.179 0.179 0.179
(0.194) (0.194) (0.194) (0.194)

b it 1 d 0.304 0.305 0.305 0.304
(0.384) (0.384) (0.385) (0.384)

a it85 d 0.0615
(0.273)

a it86 d 0.125
(0.161)

a it87 d 0.116
(0.147)

a it88 d 0.257
(0.184)

N 1076 1076 1076 1076
R2 -0.251 -0.251 -0.251 -0.249
adj. R2 -0.261 -0.260 -0.261 -0.258
F 1.440 1.318 1.281 1.363

Standard errors in parentheses

All estimates are interpreted as elasticities
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 28: Using different instruments in my preferred specification for Production Function

(1) (2) (3) (4)
twice lagged levels thrice lagged levels Delta C it Once lagged C it

f it 1 d 0.620 0.111 0.584 0.923
(0.853) (0.417) (0.334) (0.505)

b it d 4.561 1.058 0.126 1.281
(21.93) (0.900) (0.153) (1.972)

b it 1 d -2.406 -0.723 -0.157 -0.458
(11.54) (0.663) (0.151) (0.500)

a it d 1.444 0.362 -0.0111 0.443
(7.322) (0.493) (0.181) (0.843)

N 2284 1926 1926 1926
R2 -62.381 -2.507 -0.412 -3.229
adj. R2 -62.688 -2.525 -0.419 -3.251
F 0.0985 0.824 2.093 0.781

Standard errors in parentheses

All estimates are interpreted as elasticities
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 29: Production Function: First Stage Summary using twice lagged levels (1) as
instruments

(1) (2) (3)
f it 1 d b it d b it 1 d

f it 2 -0.221∗∗∗ 0.0891∗ 0.156∗∗∗

(0.0321) (0.0412) (0.0379)

b it 2 0.0263 -0.135∗∗∗ -0.254∗∗∗

(0.0136) (0.0290) (0.0254)

c it 0.183∗∗∗ 0.116∗ 0.219∗∗∗

(0.0450) (0.0497) (0.0459)
Observations 2284 2284 2284
R2 0.115 0.040 0.123
Adjusted R2 0.111 0.035 0.119
SWF 0.04 0.04 0.04
F 16.85 18.61 34.31

Standard errors in parentheses

Each coloumn corresponds to an endogenous variable. Each row corresponds to an instrument.

F and SWF statistics are as before
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 30: Production Function: First Stage Summary using thrice lagged levels (2) as
instruments.

(1) (2) (3)
f it 1 d b it d b it 1 d

f it 3 -0.125∗∗ 0.0297 0.0993∗

(0.0381) (0.0453) (0.0457)

b it 3 0.0180 -0.0902∗∗ -0.136∗∗∗

(0.0196) (0.0287) (0.0326)

c it 0.109∗ 0.135∗∗ 0.0831
(0.0534) (0.0504) (0.0477)

Observations 1926 1938 1926
R2 0.038 0.027 0.037
Adjusted R2 0.033 0.022 0.032
SWF. 1.30 1.57 1.53
F 8.86 9.16 12.21

Standard errors in parentheses

Each coloumn corresponds to an endogenous variable. F and SWF are as before.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 31: Production Function: First Stage Summary using differenced C it (3) as an
instrument

(1) (2) (3)
f it 1 d b it d b it 1 d

Delta f it-2 -0.242∗∗∗ 0.0768 0.0208
(0.0629) (0.0714) (0.0643)

Delta b it-2 -0.0249 -0.0600 -0.261∗∗∗

(0.0325) (0.0403) (0.0440)

c it d 0.0752 0.766∗ 0.0194
(0.0901) (0.314) (0.189)

Observations 1926 1926 1926
R2 0.071 0.023 0.074
Adjusted R2 0.066 0.018 0.070
SWF 10.44 3.76 8.14
F 6.81 2.20 14.53

Standard errors in parentheses

Each coloumn corresponds to an endogenous variable. F and SWF are as before.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 32: Production Function:First Stage Summary using lagged C it (4) as an
instruments.

(1) (2) (3)
f it 1 d b it d b it 1 d

Delta f it-2 -0.245∗∗∗ 0.0763 0.0211
(0.0628) (0.0714) (0.0642)

Delta b it-2 -0.0247 -0.0608 -0.261∗∗∗

(0.0324) (0.0405) (0.0440)

c it 1 0.0662 0.00358 -0.00740
(0.0438) (0.0428) (0.0410)

Observations 1926 1926 1926
R2 0.073 0.014 0.074
Adjusted R2 0.068 0.009 0.070
SWF 0.82 0.77 0.80
F 8.35 0.91 14.52

Standard errors in parentheses

Each coloumn corresponds to an endogenous variable. F and SWF are as before.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 33: Using different instruments in my preferred specification for Decision Function

(1) (2)
twice lagged levels thrice lagged levels

f it 1 d 0.0592 -0.191
(0.0924) (0.852)

b it 1 d 0.532∗ 0.119
(0.215) (0.670)

a it d 0.0100 0.0394
(0.116) (0.111)

N 1272 1076
R2 -0.547 -0.084
adj. R2 -0.558 -0.092
F 2.722 0.824

Standard errors in parentheses

All estimates are interpreted as elasticities
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 34: Decision Function: First Stage summary using lagged twice levels (1) as
instruments

(1) (2)
f it 1 d b it 1 d

f it 2 -0.203∗∗∗ 0.0450
(0.0436) (0.0242)

b it 2 0.0865∗∗∗ -0.0654∗∗

(0.0246) (0.0211)
Observations 1275 1274
R2 0.103 0.035
Adjusted R2 0.097 0.028
SWF 10.92 11.65
F 6.31 4.95

Standard errors in parentheses

Each coloumn corresponds to the first stage for each endogenous variable.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 35: Decision Function: First Stage summary using lagged thrice levels (2) as
instruments

(1) (2)
f it 1 d b it 1 d

f it 3 -0.00495 0.00858
(0.0476) (0.0265)

b it 3 0.0226 -0.0236
(0.0255) (0.0202)

Observations 1079 1077
R2 0.009 0.012
Adjusted R2 0.002 0.004
SWF 0.15 0.18
F 1.06 1.66

Standard errors in parentheses

Each coloumn corresponds to the first stage for each endogenous variable.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

69



Table 36: Production Function:Heterogeneous treatment effects across subgroups

(1) (2) (3) (4)
Animals Environment International National

Delta f it-1 -0.502 0.821∗ 0.652 0.983∗∗

(0.575) (0.365) (0.635) (0.313)

Delta b it 0.0478 0.000786 -0.176 0.825
(0.0728) (0.393) (0.462) (0.800)

Delta b it-1 -0.258 -0.168 -0.299 -0.395
(0.527) (0.177) (0.327) (0.359)

Delta a it -0.424 -0.0152 0.0909 0.205
(0.231) (0.300) (0.693) (0.379)

Observations 99 1544 683 1243
R2 0.010 -0.846 -0.699 -2.227
Adjusted R2 -0.103 -0.858 -0.724 -2.253
F 1432.3 2.379 0.701 1.599

Standard errors in parentheses

subgroups are mutually exclusive
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 37: Decision Function: Heterogeneous treatment effects across subgroups

(1) (2) (3) (4)
Animals Environment International National

Delta f it-1 -0.00618 0.578 -0.0604 0.367
(0.00823) (0.713) (0.0874) (0.401)

Delta b it-1 0.229∗ 0.328 -0.226 0.676
(0.0951) (0.419) (0.131) (0.693)

Delta a it -0.0645 0.0956 0.0948 0.0730
(0.0445) (0.145) (0.167) (0.141)

Observations 95 812 452 624
R2 0.175 -0.574 -0.004 -0.912
Adjusted R2 0.098 -0.590 -0.022 -0.937
F 5.538 0.776 1.375 0.871

Standard errors in parentheses

subgroups are mutually exclusive
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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