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Heterogeneity is ubiquitous in economics...

The most important discovery [of microdata produced in the
1950s] was the evidence on the pervasiveness of heterogeneity and
diversity in economic life... the long standing edifice of the repre-
sentative consumer was shown to lack empirical support.

- James J. Heckman, Microdata, Hetereogeneity, and the Evaluation of Public Policy,
Nobel Prize Lecture, 8 December 2000
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Heterogeneity is ubiquitous in economics...

Chetty et al. (2022)
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Heterogeneity is ubiquitous in economics...

Observed: control with covariates, quantile regression, inference on
ranks, etc.

Unobserved: absorb via fixed effects or conduct inference based on

f (y |x, θ) =
∫

f (y |x, γ)g(γ|θ)dγ

with unobserved heterogeneity parameters γi with conditional density
g(γi |θ), usually i.i.d
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...but identification often necessitates trade-offs

Identifying heterogeneity often requires

parametric restrictions

error term rationalisation

non-parametric ‘latent classes’ or ‘types’

These assumptions often give up the ability of data to falsify an underlying
model of interest
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A semi-parametric preference heterogeneity model

Working with Ian to develop a semi-parametric model of
heterogeneity that addresses these problems

My thesis studies this model and brings it to data
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Setting

Discrete observations of prices and quantities for N agents, K goods, and
T time periods:

Data comprise q and p, each an NT × K vector

Note that this accommodates idiosyncratic prices for a given good

7 / 29



‘NASP’ preferences

Individual i has direct utility that is non-separable, additive, and
semi-parametric:

υi (q) = u(q) + ai .q (1)

a (a K × 1 vector) introduces hetereogeneity in marginal utilities

u(.) is common to everyone

no restrictions placed on u(.) other than that it is rational
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‘Rational?’

Definition

A utility function u(.) rationalises the data {pt , xt}t=1,2,...T if for all x
such that pt .xt ≥ pt .x we have u(xt) ≥ u(x)
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Before any kind of estimation

First consider two questions:
1 What is the empirical content of utility maximisation under (1)?

Put another way: can data falsify our theory? If so, what would those
data look like?

2 What kinds of heterogeneity does (1) rule out?
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Revealed preference preliminaries

A binary relation on X is a subset of X 2 where we write xRy for the
binary relation R if (x , y) ∈ R

An order pair on X is a pair of binary relations ⟨R, S⟩ such that
S ⊆ R

An order pair is acyclic if there is no sequence x1, x2, ...xk such that

x1Rx2R...Rxk
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Revealed preference preliminaries

Definition

A dataset’s revealed preference pair is an order pair ⟨≿RP ,≻RP⟩ on X
with its relations defined by:

x ≿RP y iff there exists s such that x = x s and ps .x s ≥ ps .y

x ≻RP y iff there exists s such that x = x s and ps .x s > ps .y
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Revealed preference preliminaries

Definition

A dataset satisfies the Generalized Axiom of Revealed Preference
(GARP) if its revealed preference pair is acyclic.
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The NASP form provides a restriction for panel data

Proposition 1 (Crawford, 2022)

The following statements are equivalent:

1 The data {p,q} for which each individual i satisfies GARP are jointly
rationalisable by a utility function of the form in (1)

2 There exists a rationalisation of the form in (1) that is continuous,
concave, and strictly monotonic

3 There exist real numbers and vectors {U i
t , λ

i
t > 0, ai}i=1,...,N

t=1,...T such
that

U i
s ≤ U j

t + λj
tp

j
t .
(
qis − qjt

)
− aj

(
qis − qjt

)
(2)

λj
tp

j
t − aj ≥ 0K (3)

Proposition 1 is a version of Afriat’s Theorem (Afriat, 1967) for (1).

14 / 29



The restriction is a rationalisation

The Afriat inequalities in (2)-(3) define a linear program that can be
checked for a solution with well-known algorithms

Without these we would have to check the data against every
function satisfying (1)... of which there are an infinite number :’(
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Economic intuition for the Afriat inequalities (2)-(3)

Take Part 2 of Proposition 1 to be true: {p,q} has a ‘nice’ rationalisation
in the form of (1).

Concavity of υi (q) implies that

υi (qjs) ≤ υi (qit) +∇ui (q).(qjs − qit), i , j ∈ {1, ...,N}; s, t ∈ {1, ...,T}

Optimising behaviour requires the FOC

∇ui (q) = λtp
i
t − ai

(2)-(3) request utility levels, shadow prices, and heterogeneity parameters
to satisfy these conditions.
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However, we’re interested in heterogeneity

Our primary object of interest are the vectors ai

A solution to (2)-(3) means we can proceed as if (1) holds, and
restrict the possible values these vectors can take

Can we go further?
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Finding bounds on heterogeneity

A natural next question is “what is the ‘minimum amount’ of
heterogeneity consistent with the data?”

Why not the maximum?

One way to formulate this problem is:

min
{a1,a2,...,aN}

N∑
i=1

||ai ||2 (4)

subject to Ax ≤ b

where ||.|| is the ℓ2-norm and Ax ≤ b are the (re-written) Afriat
inequalities for (1).
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Some comments about (4)

Pub trivia

(4) is a special case of the ‘general Fermat problem’ of minimising a
sum of heterogeneous norms

the problem is “the earliest example of duality in the mathematical
programming literature” (see Anderson et al., 2000; Kuhn, 1974 for
more)
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Some comments about (4)

Computational issues

The number of constraints in the problem ((NT )2 + NTK ) rises
faster than the square of N and T

Cf. no. choice variables: N(3T + K )

Potentially of more concern: (4) is no longer an LP
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How hard is it to solve (4)?

The answer may not be that bad because:

Fact

(4) is a convex optimisation problem.

Why? (1) Any norm ||.|| is a convex function; and (2) the weighted sum
of m convex functions f1, ..., fm, f :=

∑m
i=1 αi fi is convex if the weights

α1, ..., αm are non-negative.

The point of all this: although we “cannot yet claim solving general
convex optimization problems is a mature technology” (Boyd and
Vandenberghe, 2004), we are not without options.
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One option: quadratic programming

With a non-negativity assumption for ai (4) can be reformulated as the
constrained least-squares problem,

min
x

x′Qx (5)

subject to Ax ≤ b

where

x is the RN(3T+K) vector of decision variables

Q is a N(3T + K )× N(3T + K ) square ‘selection matrix’ that takes
the value of 0 except for in the diagonal entries corresponding to
where the as are in x; the latter entries equal 1.
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Issues with solving (5) via CLS

Aside from the additional assumption, (5) can be involved to implement
because its dual,

max
λ

1

2
λ′AQ−1A′λ− λ′b (6)

subject to λ ≥ 0

asks for an inverse of Q which is positive semidefinite in our context.

There are ways around this (e.g. pseudo-inverses, as Yang is working with)
but these can be ill-behaved from high correlation between the rows of Q.
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A better option: conic programming

The path we have chosen involves cones. Recall from convex analysis that

Definition

C ∈ Rn is a convex cone if

for all x , y ∈ C we have x + y ∈ C

for all x ∈ C and α ≥ 0 we have αx ∈ K

Cones are abundant in economics. For example, under constant returns to
scale the production set is a cone.

Cones are also useful in optimization. For example, the dual of a closed
convex cone is easy to derive and is itself a convex cone.
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Conic formulation of (4)

The conic programming version of (4) is:

min
x

N∑
i=1

ti (7)

subject to (ti ,Fix) ∈ QK+1
i

and Ax ≥ b

where QK+1
i is the K + 1-dimensional quadratic cone defined as

QK+1 = {x ∈ RK+1|x1 ≥
√

x22 + ...x2K+1} (8)

Intuitively, individuals’ ‘aggregated heterogeneity contributions’ ||ai ||2 live
within a cone with dimension defined by the goods space K .
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Applications: empirical work

1 Minimizing heterogeneity in micro panel data

CentERpanel: representative, weekly, stratified survey of c. 2,000
households and 5,000 individuals

2 (Speculative) Finding feasible Pareto weights in Dworczak, Kominers,
and Akbarpour (2021)
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Applications: dealing with other forms of heterogeneity

When ai is time-invariant, there are some forms of heterogeneity that (1)
cannot represent.

Consider for example the case where i = {1, 2}, q = (x , y , z)′, u(q) = x ,
and where the true preferences for the agents are respectively represented
by

υ1(q) = x +
√
yz (9)

υ2(q) = x + y + z (10)

Now suppose each agent’s choice set comprises the bundles q1 = (1, 0, 3)′

and q2 = (1, 1, 1)′. Adding a third bundle q3 = (1, 1, 9)′ to the choice set
cannot be rationalised by (1).
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Applications: dealing with other forms of heterogeneity

Here are two helpful results about such cases:

1 If the data {pit ,qit} can be rationalised by a utility function, then they
can also be rationalised by a utility function of the form in (1).

2 In any cross section of N individuals, the dataset {pit ,qit} is
rationalisable by a utility function of the form in (1)

Corollary

Forms of preference heterogeneity that cannot be rationalised by (1) can
be rationalised in the form of (1) when ai is time-varying.
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Applications: welfare analysis

The idiosyncratic part of utility ai .q can be used as the basis of
interpersonal welfare comparisons since the difference in utility for
individuals i and j is,

∆υij(q) = υ(q)i − υ(q)i = (ai − aj)q (11)

Note that since ∆υij(q) = 0 has an economic meaning, (11) implicitly
restricts the set of acceptable utility profile transformations for this
purpose.
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