Bandits as Poli 00 Classic Adverse Selection

Adaptive Adverse Selection

Conclusion

Adverse Selection in Adaptive Settings

Carlos Gonzalez

University of Oxford, Department of Economics

November, 2022

Carlos Gonzalez

Adverse Selection in Adaptive Settings

University of Oxford, Department of Economics

Motivation 00	Bandits 000	Bandits as Policy 00	Classic Adverse Selection	Adaptive Adverse Selection	C

- **4** Classic Adverse Selection
- **5** Adaptive Adverse Selection

Carlos Gonzalez

Motivation ●○	Bandits 000	Bandits as Policy 00	Classic Adverse Selection	Adaptive Adverse Selection	Co

2 Bandits

- **3** Bandits as Policy
- **4** Classic Adverse Selection
- **5** Adaptive Adverse Selection

6 Conclusion

Motivation ○●	Bandits 000	Bandits as Policy 00	Classic Adverse Selection	Adaptive Adverse Selection	Conclusion 00000

- A set of agents have some productivity *u* and some reservation value to work *v*
- Firm wants to maximize profits Π by setting wage x, but it does not observe u_i, neither v_i for any agent i
- Classic literature show foundational results on wage setting when joint distribution $F_{U,V}$ is known. But this seems rather unreasonable...
- Adaptive characterization of the problems above with imperfect information allow firms to set wages iteratively such that they can learn the underlying distribution while maximizing profits
- BT: What if the policymaker also cared about the welfare of workers?

Motivation 00	Bandits ●00	Bandits as Policy 00	Classic Adverse Selection	Adaptive Adverse Selection	Co

- **3** Bandits as Policy
- 4 Classic Adverse Selection
- **5** Adaptive Adverse Selection

Carlos Gonzalez

Adverse Selection in Adaptive Settings

lotivation	Bandits	Bandits as Policy
	000	00

Classic Adverse Selection

Adaptive Adverse Selection

Conclusion 00000

Multi-Armed Bandits

- What is a (multi-armed) bandit?
 - Slot machines example. Exploration vs Exploitation
 - Let's be a bit more rigorous...
- Some important concepts
 - History *H*_t
 - Policy $\pi_t: H_t \mapsto A_t$
 - Regret $R(\pi,\epsilon)$ with ϵ the competitor class
- Two kinds of Bandits
 - Stochastic Bandits: $P_a : a \in A$. Learner chooses action A_t
 - Adversarial Bandits: Arbitrary sequences $\{x_t\}_1^T$. Learner chooses P_t
 - Differences across E[R]

Mutli-armed bandits

- Two main objects of interest in a bandit problem
- An Upper Bound in the Regret of an Algorithm
 - For a given algorithm α, what is the (order of the) regret of the worst bandit I can give you?
- A Lower Bound in the Regret of the Problem
 - Which is the regret of the algorithm with the lowest Upper Bound among all possible (reasonable) algorithms.
- Usual goal is to obtain sublinear regrets $R_{\pi} < \mathcal{O}(T)$

Motivation 00	Bandits 000	Bandits as Policy ●○	Classic Adverse Selection	Adaptive Adverse Selection	Conclu 0000

2 Bandits

3 Bandits as Policy

4 Classic Adverse Selection

5 Adaptive Adverse Selection

6 Conclusion

Carlos Gonzalez

Adverse Selection in Adaptive Settings

- Bandits are amazing, but how are they policy relevant?
- Rather than T periods, think about N agents. Every period, I select a policy parameter (a wage, a tax rate, a price) and I observe the behaviour of agent i
- If I understand policy parameters as (continuous) arms and rewards as particular realizations (either stochastic, either adversarial) of some unknown distribution (or sequence of rewards), then we are back to normal!
- Three foundational papers to my work
 - [Kleinberg and Leighton, 2003] A monopolist problem
 - [Cesa-Bianchi et al., 2021] A bilateral trade problem
 - [Cesa-Bianchi et al., 2022] A policy parameter problem
- More on their models and results later

Bandits

2 Bandits

3 Bandits as Policy

4 Classic Adverse Selection

Competitive Equilibrium Monopolistic Competition

5 Adaptive Adverse Selection

6 Conclusion

Motivation 00

Bandits as Policy 00 Classic Adverse Selection

Adaptive Adverse Selection

Conclusion 00000

Classic Problem, Classic Solutions

Bandits

- [Akerlof, 1978], [Mas-Colell et al., 1995], [Cowell, 2018]
- Consider the following setting
 - *N* agents, with ability (type) $u_i \in U$ and reservation value $v_i \in \mathcal{V}$. \mathcal{U}, \mathcal{V} closed intervals in \mathbb{R}^+
 - Formally, consider a measure space $(\Omega, \mathcal{F}, \mu)$ and define two rv U, V such that $U : \mathcal{F} \mapsto \mathcal{B}(\mathcal{U}), V : \mathcal{F} \mapsto \mathcal{B}(\mathcal{V})$, where $\mathcal{B}(\cdot)$ is the Borel σ -algebra.
 - You may think of $F_{U,V}$ as the product measure $F_U \otimes F_V$ where F_Z is the induced measure of μ on \mathcal{Z} defined via $(\mu \circ Z^{-1})(B)$ for every $B \in \mathcal{B}(\mathcal{U})$
 - u_i and v_i are simply the *i*th realizations of such variables
 - Agent *i* observes wage x_i and makes decision $J_i = \mathbb{1}(x_i > v_i)$

• Define
$$J^j = \{i : J_i = j\}$$

Competitive Equilibrium

1 Motivation

Bandits

3 Bandits as Policy

- 4 Classic Adverse Selection Competitive Equilibrium Monopolistic Competition
- 5 Adaptive Adverse Selection

6 Conclusion

Bandits as Policy

Classic Adverse Selection

Adaptive Adverse Selection

Conclusion

Competitive Equilibrium

Competitive Equilibrium

Bandits

- Consider now two classic problems in Adverse Selection
- Problem 1: Competitive Equilibrium
 - Competitive market with 2 firms (wlog) where the policy planner wants to maximize welfare S^{CE} defined via

$$S^{\mathsf{CE}} = \int_{\mathcal{U},\mathcal{V}} [Jx + (1-J)v] \ dF_{U,V}$$
(1)

• Profits don't show up because in equilibrium they are driven down to zero through Bertrand-like competition

Bandits as Policy

Classic Adverse Selection

Adaptive Adverse Selection

Conclusion 00000

Competitive Equilibrium

Bandits

Competitive Equilibrium under Full Information

- Under full-information (i.e. $u_i \in H_i$) solution is given by $x_i = u_i$ (and $J^1 = \{i : x_i \ge v_i\}$).
- This result can be characterized under Competitive Equilibrium (CE) and Perfect Bayesian Equilibrium (PBE)
- Observe that social welfare (1) is maximized. Thus equilibrium is socially optimal x_i = x_i^{*}, J¹ = J^{1*}.

Bandits as Policy

Classic Adverse Selection

Adaptive Adverse Selection

Conclusion

Competitive Equilibrium

Bandits

Competitive Equilibrium under Partial Information

- But life is not always as beautiful...
- Imagine only $F_{u,v} \in H_i$ for all i
- CE and PBE solutions to this game are characterized via

$$x = u : \{\mathbb{E}[u] = \mathbb{E}[u_i \mid i : v_i < x_i]\}$$

$$(2)$$

- (In most cases) the set of solutions is not empty
- Observe that there is no room for price discrimination under partial information
- Is any of these equilibria socially optimal? (In most cases) absolutely NOT!

Bandits as Policy

Classic Adverse Selection

Adaptive Adverse Selection

Conclusion

Competitive Equilibrium

Bandits

Market Unraveling and Adverse Selection under CE

- Consider v = r(u) with r(·) strictly increasing AND r(u_i) < u_i for all i
- Under partial information $(r(\cdot) \text{ known}, F_{u,v} \text{ known})$ the market may (completely) unravel driven by Adverse Selection considerations
- Example?

Carlos Gonzalez

Monopolistic Competition

Motivation

Bandits

3 Bandits as Policy

- 4 Classic Adverse Selection Competitive Equilibrium Monopolistic Competition
- 5 Adaptive Adverse Selection

Motivation 00	Bandits 000	Bandits as Policy 00	Classic Adverse Selection	Adaptive Adverse Selection	Conclusion 00000
Monopolistic C	ompetition				

• Problem 2: Monopolistic Competition

• 1 monopolistic firm maximizes profits (Π) such that

$$\Pi = \int_{\mathcal{U},\mathcal{V}} [J(u_i - x_i)] \ dF_{U,V}$$
(3)

• A social welfare S^{MC} can be defined as

$$S^{MC} = \int_{\mathcal{U},\mathcal{V}} J((u_i - x_i) + \lambda(x_i - v_i)) \ dF_{U,V}$$
(4)

• With $\lambda < 1$

Carlos Gonzalez

Bandits as Polic

Classic Adverse Selection

Adaptive Adverse Selection

Conclusion 00000

Monopolistic Competition

Bandits

Monopolistic Equilibrium under Full Information

- Under full-information (i.e. $u_i \in H_i$) solution is given by $x_i = \mathbb{1}(u_i \ge v_i)v_i$ (and $J^1 = \{i : u_i \ge v_i\}$).
- Workers' revenue is driven down to 0
- For $\lambda < 1$, social welfare is maximized (although, possibly, as policymakers we are not very happy with this result).

Bandits as Policy

Classic Adverse Selection

Adaptive Adverse Selection

Conclusion 00000

Monopolistic Competition

Bandits

Monopolistic Equilibrium under Partial Information

- Define Partial Information like in the Competitive Equilibrium case
- Solution to this game is characterized via

$$x^{\mathsf{MC}} = \operatorname*{arg\,max}_{x} \mathbb{E}_{v} \big[J(v) \big(\mathbb{E}_{u}[u \mid v] - x + \lambda(x - v) \big) \big] \quad (5)$$

• An object not as fancy as the one in equation (2), but well-defined

Motivation 00	Bandits 000	Bandits as Policy	Classic Adverse Selection	Adaptive Adverse Selection

2 Bandits

- **3** Bandits as Policy
- **4** Classic Adverse Selection
- **5** Adaptive Adverse Selection

6 Conclusion

Carlos Gonzalez

Adverse Selection in Adaptive Settings

Motivation Bandits Bandits as Policy

Classic Adverse Selection

Adaptive Adverse Selection

Conclusion 00000

Contributions of the Paper

- I derive adaptive analogs of the models above
- **Scope**: For the first time, I characterize models which focus on maximizing consumer surplus (not firm's revenue). Lack of Incentive Compatibility constraints pose new challenges in adaptive frameworks.
- Asymmetric feedback: Feedback is dependent to agent's actions. There are extra returns to exploration in a particular exploitation instance.
- Target Distribution Structure: I model concrete bounds for structurally dependent *u*, *v*. Of particular interest is the dependence structure *v_i* ≤ *u_i* for all *i*.

Adaptive Monopolistic Competition

- I start by characterizing a version of Adaptive Monopolistic Competition
- **Key Idea:** Create a model for equation (4) where $F_{U,V}$ remains unknown in i = 0
- This model remains novel, as introduces feedback asymmetries, which remain unexplored in the literature.
- Consider the following

$$S_i^{\mathsf{MC}} = \mathbb{1}(x_i > v_i) \big((u_i - x_i) + \lambda(x_i - v_i) \big) \tag{6}$$

Adaptive Monopolistic Competition

- Timeline: Agent *i* arrives, firm offers wage x_i based on H_i.
 Worker observes x_i and plays J_i = 1(x_i > v_i).
- If $J_i = 1$, agent *i* works. Firm observes productivity u_i and welfare gains are realized.
- Crucially, productivity u_i (and consequently S_i) is only observed if $J_i = 1$. This introduces feedback asymmetry into the problem
- Optimal policy in this context is given by its known distribution analog. Regret is defined accordingly

Bandits Bandits as Policy

Classic Adverse Selection

Adaptive Adverse Selection

Conclusion

Comparison with [Cesa-Bianchi et al., 2021]

• We may rewrite equation (6) following [Cesa-Bianchi et al., 2022] as

$$G_{i}^{\nu}(x_{i})\int_{x}^{\infty}G_{i}^{u}(x') \ dx' + \lambda\int_{0}^{x}G_{i}^{\nu}(x') \ dx'$$
(7)

- Where we used that there is no loss in replacing (u_i x_i) by max(u_i - x_i, 0)
- And we have defined where $G_i^v(x_i) = \mathbb{1}(x_i \ge v_i)$ and $G_i^u(x_i) = \mathbb{1}(x_i \le u_i)$. Moreover, we use the fact that $\mathbb{1}(x_i > v_i)(x_i v_i) = \max(x_i v_i, 0) = \int_0^x G_i^v(x') dx'$ and $\max(u_i x_i, 0) = \int_x^\infty G_i^u(x') dx'$

Motivation

Bandits

Bandits as Policy

Classic Adverse Selection

Adaptive Adverse Selection

Conclusion

Comparison with [Cesa-Bianchi et al., 2021]

• This expression is rather similar to the one in [Cesa-Bianchi et al., 2022]

$$x_i G_i(x_i) + \lambda \int_x^1 G_i(x) dx$$
(8)

• And [Cesa-Bianchi et al., 2021]

$$G_{i}^{b}(x_{i}) \int_{0}^{x} G_{i}^{s}(x) dx + G_{i}^{s}(x_{i}) \int_{x}^{1} G_{i}^{b}(x) dx \qquad (9)$$

Carlos Gonzalez

University of Oxford, Department of Economics

Adverse Selection in Adaptive Settings

Adaptive Adverse Selection

Conclusion 00000

Comparison with [Cesa-Bianchi et al., 2021]

Bandits as Policy

- In terms of Information requirements, our problem is more similar to the one by [Cesa-Bianchi et al., 2021]
- In particular, it requires global information for both the welfare and the gradient
- [Cesa-Bianchi et al., 2021] establishes optimal upper bounds for algorithms of $\mathcal{O}(N^{\frac{1}{2}})$ in the stochastic case when full feedback is recovered
- And of $\mathcal{O}(N)$ when only partial information G_i is revealed after each iteration. They also get $\mathcal{O}(N^{\frac{2}{3}})$ bounds in the partial information setting but under strong additional assumptions
- In the adversarial case, they get bounds $\mathcal{O}(N)$ in all cases

Motivation

Bandits

Bandits

Bandits as Policy 00 Classic Adverse Selection

Adaptive Adverse Selection

Conclusion 00000

Comparison with [Cesa-Bianchi et al., 2021]

- **Conjecture:** The non-zero measure of the event "full-information" gives some hope for sublinear regret in the stochastic case
- **Conjecture:** I have little hope for sublinear regret in the adversarial case

Carlos Gonzalez

Motivation 00	Bandits 000	Bandits as Policy 00	Classic Adverse Selection	Adaptive Adverse Selection	Conclu 0000

Adaptive Competitive Equilibrium

- Key Idea: Create a model for equation (1) where $F_{U,V}$ remains unknown in i = 0
- **Challenge 1:** Reproduce competition in an adaptive setting is very difficult. Firm should have an idea of the wage setting mechanism of the other firm.
- **Challenge 2:** Cannot introduce constraints in expectation, given that the probability distribution is unknown to the learner in first place
- **Solution?** Introduce a penalization mechanism for firm profits and losses
- Key idea: This penalization CANNOT be symmetric, otherwise there will exist incentives to subsidize workers via firm losses

MotivationBanditsBandits as PolicyClassic000000000000

Classic Adverse Selection

Adaptive Adverse Selection

Conclusion 00000

Naive Model Goes Wrong...

$$S_i = \max(x_i, v_i) + \lambda \mathbb{1}(x_i > v_i)(u_i - x_i)$$
(10)

- The policymaker finds profitable to subsidize the worker via losses for $\lambda < 1$
- Setting $\lambda > 1$ is not helping us neither $\implies \mathbb{E}[\Pi] > 0$
- We need to "disproportionately" penalize loses, while fostering worker's welfare. This is rather tricky

Motivation 00	Bandits 000	Bandits as Policy 00	Classic Adverse Selection	Adaptive Adverse Selection	Co

Adaptive Competitive Equilibrium

$$S_{i} = \max(x_{i}, v_{i}) + \mathbb{1}(x_{i} > v_{i}) [\lambda_{1} \mathbb{1}(x_{i} \le u_{i})(u_{i} - x_{i}) + \lambda_{2} \mathbb{1}(x_{i} > u_{i})(x_{i} - u_{i})]$$
(11)

$$S_{i} = \max(x_{i}, v_{i}) + \mathbb{1}(x_{i} > v_{i})[\lambda_{1}\mathbb{1}\max(u_{i} - x_{i}, 0) + \lambda_{2}\max(x_{i} - u_{i}, 0)] + \lambda_{2}\max(x_{i} - u_{i}, 0)]$$
(12)

$$S_{i} \sim \max(x_{i} - v_{i}, 0) + \mathbb{1}(x_{i} > v_{i})[\lambda_{1}\mathbb{1}\max(u_{i} - x_{i}, 0) + \lambda_{2}\max(x_{i} - u_{i}, 0)] + \lambda_{2}\max(x_{i} - u_{i}, 0)]$$
(13)

• Weights $\lambda_1 < 1$ and $\lambda_2 < -1$ ensure dislike for profits and loses

Carlos Gonzalez

University of Oxford, Department of Economics

Adverse Selection in Adaptive Settings

Classic Adverse Selection

Adaptive Adverse Selection

Conclusion 00000

Did We Get It Right?

- Under full information equation (13) is maximized by setting x_i = u_i with induced J¹ = {i : x_i = u_i ≥ v_i}. Just like in equation (1) (classic result)
- However, under partial information our results will be in general different from Akerlof's x_i = E[u_i|i : x_i ≥ v_i]. Why? We broke asymmetry!

Classic Adverse Selection

Adaptive Adverse Selection

Conclusion 00000

Does It Really Matter?

Consider two increasing sequences $\{\lambda_{1n}\}_1^N, \{\lambda_{2n}\}_1^N$ such that $\{\lambda_{1n}\}_1^N \to 1, \{\lambda_{2n}\}_1^N \to -1$. x_i is not well defined as the limit of the optimization problem BUT

Claim: For any $\epsilon > 0 \exists$ an $n \in \mathbb{N}$ such that $x_i - \mathbb{E}[u_i | x_i < v_i] < \epsilon$ where $x_i = \arg \max_x S_i(x, \lambda_{1n}, \lambda_{2n})$

Corollary: In general our problem characterizes a different equilibrium (a slightly more complicated object) than the one in Akerlof's static unknown distribution **BUT** we can get our solution as close as we want to his result.

Motivation 00	Bandits 000	Bandits as Policy 00	Classic Adverse Selection	Adaptive Adverse Selection
				000000000000000000000000000000000000000

Conclusion 00000

Adaptive Competitive Equilibrium

• We may write equation (13) in integral form such that

$$S_{i} = \int_{x}^{\infty} G_{i}^{v}(x') \, dx' + (1 - G_{i}^{v}(x_{i})) \left(\lambda_{1} \int_{0}^{x} G_{i}^{u}(x') \, dx' + \lambda_{2} \int_{x}^{\infty} (1 - G_{i}^{v}(x')) \, dx'\right)$$
(14)

Carlos Gonzalez

University of Oxford, Department of Economics

Adverse Selection in Adaptive Settings

Bandits as Polic

Classic Adverse Selection

Adaptive Adverse Selection

Conclusion

Adaptive Competitive Equilibrium

Bandits

- Comments wrt [Cesa-Bianchi et al., 2021] remain valid
- Conjecture: Similar? I guess?

Carlos Gonzalez

Motivation 00	Bandits 000	Bandits as Policy 00	Classic Adverse Selection	Adaptive Adverse Selection	Conclusion •0000

- Bandits as Policy
- **4** Classic Adverse Selection
- **5** Adaptive Adverse Selection

Carlos Gonzalez

Adverse Selection in Adaptive Settings

Motivation 00	Bandits 000	Bandits as Policy 00	Classic Adverse Selection	Adaptive Adverse Selection	Conclusion ○●○○○

- Conclusion
 - Bandits are a very powerful tool for public policy design!
 - This paper introduces analogs for Monopolistic and Competitive Equilibrium in adaptive settings which can be of relevance in many settings
 - This paper introduces the concept of feedback asymmetry within the adaptive public policy literature
 - This paper introduces competitive mechanisms within adaptive public policy literature. Results are not perfect, but not too bad!
 - Previous results give me hope for sublinear regret bounds in the problems above

Motivation 00	Bandits 000	Bandits as Policy 00	Classic Adverse Selection	Adaptive Adverse Selection	Conclusion 00●00

Thanks!

Carlos Gonzalez

University of Oxford, Department of Economics

Adverse Selection in Adaptive Settings

Motivation 00	Bandits 000	Bandits as Policy 00	Classic Adverse Selection	Adaptive Adverse Selection	Conclusion 000●●	
[Ak T n	erlof, 19 ⁻ The mark nechanisi n <i>Uncert</i>	78] Akerlof, G et for "lemo m. rainty in econc	5. A. (1978). ns" : Quality unce pmics, pages 235–2	ertainty and the mains 251. Elsevier.	rket	
Ces] C A II	 [Cesa-Bianchi et al., 2021] Cesa-Bianchi, N., Cesari, T. R., Colomboni, R., Fusco, F., and Leonardi, S. (2021). A regret analysis of bilateral trade. In Proceedings of the 22nd ACM Conference on Economics and Computation, pages 289–309. 					
ee] ام A	sa-Bianc (asy, M. (daptive	hi et al., 2022 (2022). maximization] Cesa-Bianchi, N of social welfare.	., Colomboni, R., ar	ıd	

[Cowell, 2018] Cowell, F. (2018). *Microeconomics: principles and analysis.* Oxford University Press.

[Kleinberg and Leighton, 2003] Kleinberg, R. and Leighton, T. (2003).

The value of knowing a demand curve: Bounds on regret for online posted-price auctions.

In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pages 594–605. IEEE.

[Mas-Colell et al., 1995] Mas-Colell, A., Whinston, M. D., Green, J. R., et al. (1995).

Microeconomic theory, volume 1.

Oxford university press New York.