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Motivation

• A set of agents have some productivity u and some
reservation value to work v

• Firm wants to maximize profits Π by setting wage x , but it
does not observe ui , neither vi for any agent i

• Classic literature show foundational results on wage setting
when joint distribution FU,V is known. But this seems rather
unreasonable...

• Adaptive characterization of the problems above with
imperfect information allow firms to set wages iteratively such
that they can learn the underlying distribution while
maximizing profits

• BT: What if the policymaker also cared about the welfare of
workers?
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Multi-Armed Bandits

• What is a (multi-armed) bandit?
• Slot machines example. Exploration vs Exploitation
• Let’s be a bit more rigorous...

• Some important concepts
• History Ht
• Policy πt : Ht 7→ At
• Regret R(π, ϵ) with ϵ the competitor class

• Two kinds of Bandits
• Stochastic Bandits: Pa : a ∈ A. Learner chooses action At
• Adversarial Bandits: Arbitrary sequences {xt}T

1 . Learner
chooses Pt

• Differences across E[R]
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Mutli-armed bandits

• Two main objects of interest in a bandit problem
• An Upper Bound in the Regret of an Algorithm

• For a given algorithm α, what is the (order of the) regret of
the worst bandit I can give you?

• A Lower Bound in the Regret of the Problem
• Which is the regret of the algorithm with the lowest Upper

Bound among all possible (reasonable) algorithms.
• Usual goal is to obtain sublinear regrets Rπ < O(T )
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• Bandits are amazing, but how are they policy relevant?
• Rather than T periods, think about N agents. Every period, I

select a policy parameter (a wage, a tax rate, a price) and I
observe the behaviour of agent i

• If I understand policy parameters as (continuous) arms and
rewards as particular realizations (either stochastic, either
adversarial) of some unknown distribution (or sequence of
rewards), then we are back to normal!

• Three foundational papers to my work
• [Kleinberg and Leighton, 2003] A monopolist problem
• [Cesa-Bianchi et al., 2021] A bilateral trade problem
• [Cesa-Bianchi et al., 2022] A policy parameter problem

• More on their models and results later
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Classic Problem, Classic Solutions

• [Akerlof, 1978], [Mas-Colell et al., 1995], [Cowell, 2018]
• Consider the following setting

• N agents, with ability (type) ui ∈ U and reservation value
vi ∈ V . U ,V closed intervals in R+

• Formally, consider a measure space (Ω,F , µ) and define two rv
U,V such that U : F 7→ B(U), V : F 7→ B(V), where B(·) is
the Borel σ-algebra.

• You may think of FU,V as the product measure FU ⊗ FV where
FZ is the induced measure of µ on Z defined via (µ ◦ Z−1)(B)
for every B ∈ B(U)

• ui and vi are simply the ith realizations of such variables
• Agent i observes wage xi and makes decision Ji = 1(xi > vi)
• Define J j = {i : Ji = j}
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Competitive Equilibrium

Competitive Equilibrium

• Consider now two classic problems in Adverse Selection
• Problem 1: Competitive Equilibrium

• Competitive market with 2 firms (wlog) where the policy
planner wants to maximize welfare SCE defined via

SCE =

∫
U,V

[Jx + (1− J)v ] dFU,V (1)

• Profits don’t show up because in equilibrium they are driven
down to zero through Bertrand-like competition
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Competitive Equilibrium

Competitive Equilibrium under Full Information

• Under full-information (i.e. ui ∈ Hi) solution is given by
xi = ui (and J1 = {i : xi ≥ vi}).

• This result can be characterized under Competitive
Equilibrium (CE) and Perfect Bayesian Equilibrium (PBE)

• Observe that social welfare (1) is maximized. Thus
equilibrium is socially optimal xi = x∗

i , J1 = J1∗.
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Competitive Equilibrium

Competitive Equilibrium under Partial Information

• But life is not always as beautiful...
• Imagine only Fu,v ∈ Hi for all i
• CE and PBE solutions to this game are characterized via

x = u : {E[u] = E[ui | i : vi < xi ]} (2)

• (In most cases) the set of solutions is not empty
• Observe that there is no room for price discrimination under

partial information
• Is any of these equilibria socially optimal? (In most cases)

absolutely NOT!
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Competitive Equilibrium

Market Unraveling and Adverse Selection under CE

• Consider v = r(u) with r(·) strictly increasing AND r(ui) < ui
for all i

• Under partial information (r(·) known, Fu,v known) the
market may (completely) unravel driven by Adverse Selection
considerations

• Example?
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Monopolistic Competition

• Problem 2: Monopolistic Competition
• 1 monopolistic firm maximizes profits (Π) such that

Π =

∫
U,V

[J(ui − xi)] dFU,V (3)

• A social welfare SMC can be defined as

SMC =

∫
U,V

J
(
(ui − xi) + λ(xi − vi)

)
dFU,V (4)

• With λ < 1
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Monopolistic Competition

Monopolistic Equilibrium under Full Information

• Under full-information (i.e. ui ∈ Hi) solution is given by
xi = 1(ui ≥ vi)vi (and J1 = {i : ui ≥ vi}).

• Workers’ revenue is driven down to 0
• For λ < 1, social welfare is maximized (although, possibly, as

policymakers we are not very happy with this result).

Carlos Gonzalez University of Oxford, Department of Economics
Adverse Selection in Adaptive Settings 19 / 40



. .. .Motivation
. .. .. .Bandits

. .. .Bandits as Policy
. .. .. .. .. .. .. .. .. .. .. .Classic Adverse Selection

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .Adaptive Adverse Selection
. .. .. .. .. .Conclusion

Monopolistic Competition

Monopolistic Equilibrium under Partial Information

• Define Partial Information like in the Competitive Equilibrium
case

• Solution to this game is characterized via

xMC = arg max
x

Ev
[
J(v)

(
Eu[u | v ]− x + λ(x − v)

)]
(5)

• An object not as fancy as the one in equation (2), but
well-defined
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Contributions of the Paper

• I derive adaptive analogs of the models above
• Scope: For the first time, I characterize models which focus

on maximizing consumer surplus (not firm’s revenue). Lack of
Incentive Compatibility constraints pose new challenges in
adaptive frameworks.

• Asymmetric feedback: Feedback is dependent to agent’s
actions. There are extra returns to exploration in a particular
exploitation instance.

• Target Distribution Structure: I model concrete bounds for
structurally dependent u, v . Of particular interest is the
dependence structure vi ≤ ui for all i .
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Adaptive Monopolistic Competition

• I start by characterizing a version of Adaptive Monopolistic
Competition

• Key Idea: Create a model for equation (4) where FU,V
remains unknown in i = 0

• This model remains novel, as introduces feedback
asymmetries, which remain unexplored in the literature.

• Consider the following

SMC
i = 1(xi > vi)

(
(ui − xi) + λ(xi − vi)

)
(6)
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Adaptive Monopolistic Competition

• Timeline: Agent i arrives, firm offers wage xi based on Hi .
Worker observes xi and plays Ji = 1(xi > vi).

• If Ji = 1, agent i works. Firm observes productivity ui and
welfare gains are realized.

• Crucially, productivity ui (and consequently Si) is only
observed if Ji = 1. This introduces feedback asymmetry into
the problem

• Optimal policy in this context is given by its known
distribution analog. Regret is defined accordingly
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Comparison with [Cesa-Bianchi et al., 2021]

• We may rewrite equation (6) following
[Cesa-Bianchi et al., 2022] as

Gv
i (xi)

∫ ∞

x
Gu

i (x ′) dx ′ + λ

∫ x

0
Gv

i (x ′) dx ′ (7)

• Where we used that there is no loss in replacing (ui − xi) by
max(ui − xi , 0)

• And we have defined where Gv
i (xi) = 1(xi ≥ vi) and

Gu
i (xi) = 1(xi ≤ ui). Moreover, we use the fact that
1(xi > vi)(xi − vi) = max(xi − vi , 0) =

∫ x
0 Gv

i (x ′) dx ′ and
max(ui − xi , 0) =

∫∞
x Gu

i (x ′) dx ′
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Comparison with [Cesa-Bianchi et al., 2021]

• This expression is rather similar to the one in
[Cesa-Bianchi et al., 2022]

xiGi(xi) + λ

∫ 1

x
Gi(x) dx (8)

• And [Cesa-Bianchi et al., 2021]

Gb
i (xi)

∫ x

0
G s

i (x) dx + G s
i (xi)

∫ 1

x
Gb

i (x) dx (9)
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Comparison with [Cesa-Bianchi et al., 2021]

• In terms of Information requirements, our problem is more
similar to the one by [Cesa-Bianchi et al., 2021]

• In particular, it requires global information for both the
welfare and the gradient

• [Cesa-Bianchi et al., 2021] establishes optimal upper bounds
for algorithms of O(N 1

2 ) in the stochastic case when full
feedback is recovered

• And of O(N) when only partial information Gi is revealed after
each iteration. They also get O(N 2

3 ) bounds in the partial
information setting but under strong additional assumptions

• In the adversarial case, they get bounds O(N) in all cases
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Comparison with [Cesa-Bianchi et al., 2021]

• Conjecture: The non-zero measure of the event
"full-information" gives some hope for sublinear regret in the
stochastic case

• Conjecture: I have little hope for sublinear regret in the
adversarial case
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Adaptive Competitive Equilibrium

• Key Idea: Create a model for equation (1) where FU,V
remains unknown in i = 0

• Challenge 1: Reproduce competition in an adaptive setting is
very difficult. Firm should have an idea of the wage setting
mechanism of the other firm.

• Challenge 2: Cannot introduce constraints in expectation,
given that the probability distribution is unknown to the
learner in first place

• Solution? Introduce a penalization mechanism for firm profits
and losses

• Key idea: This penalization CANNOT be symmetric,
otherwise there will exist incentives to subsidize workers via
firm losses
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Naive Model Goes Wrong...

Si = max(xi , vi) + λ1(xi > vi)(ui − xi) (10)

• The policymaker finds profitable to subsidize the worker via
losses for λ < 1

• Setting λ > 1 is not helping us neither =⇒ E[Π] > 0

• We need to "disproportionately" penalize loses, while fostering
worker’s welfare. This is rather tricky
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Adaptive Competitive Equilibrium

Si = max(xi , vi) + 1(xi > vi)[λ11(xi ≤ ui)(ui − xi)

+ λ21(xi > ui)(xi − ui)] (11)

Si = max(xi , vi) + 1(xi > vi)[λ11max(ui − xi , 0)

+ λ2 max(xi − ui , 0)] (12)

Si ∼ max(xi − vi , 0) + 1(xi > vi)[λ11max(ui − xi , 0)

+ λ2 max(xi − ui , 0)] (13)

• Weights λ1 < 1 and λ2 < −1 ensure dislike for profits and
loses
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Did We Get It Right?

• Under full information equation (13) is maximized by setting
xi = ui with induced J1 = {i : xi = ui ≥ vi}. Just like in
equation (1) (classic result)

• However, under partial information our results will be in
general different from Akerlof’s xi = E[ui |i : xi ≥ vi ]. Why?
We broke asymmetry!
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Does It Really Matter?

Consider two increasing sequences {λ1n}N
1 , {λ2n}N

1 such that
{λ1n}N

1 → 1, {λ2n}N
1 → −1. xi is not well defined as the limit of

the optimization problem BUT
Claim: For any ϵ > 0 ∃ an n ∈ N such that xi − E[ui |xi < vi ] < ϵ
where xi = arg maxx Si(x , λ1n, λ2n)

Corollary: In general our problem characterizes a different
equilibrium (a slightly more complicated object) than the one in
Akerlof’s static unknown distribution BUT we can get our solution
as close as we want to his result.
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Adaptive Competitive Equilibrium

• We may write equation (13) in integral form such that

Si =

∫ ∞

x
Gv

i (x ′) dx ′ + (1− Gv
i (xi))

(
λ1

∫ x

0
Gu

i (x ′) dx ′+

λ2

∫ ∞

x
(1− Gv

i (x ′)) dx ′

)
(14)
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Adaptive Competitive Equilibrium

• Comments wrt [Cesa-Bianchi et al., 2021] remain valid
• Conjecture: Similar? I guess?
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Conclusion

• Bandits are a very powerful tool for public policy design!
• This paper introduces analogs for Monopolistic and

Competitive Equilibrium in adaptive settings which can be of
relevance in many settings

• This paper introduces the concept of feedback asymmetry
within the adaptive public policy literature

• This paper introduces competitive mechanisms within
adaptive public policy literature. Results are not perfect, but
not too bad!

• Previous results give me hope for sublinear regret bounds in
the problems above
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Thanks!
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