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Empirical evidence of time inconsistency

Which option do you prefer?

A) £100 today
B) £110 next week

Which option do you prefer?

C) £100 one year from now
D) £110 one year and a week from now

Most people choose A ≻ B and D ≻ C , providing evidence of time in-
consistency: a person’s relative preference for well-being at an earlier date
over a later date changes according to when she is asked.

This behaviour has been consistently detected in humans, rats and pigeons.
(Ainslie, 1974)
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Time inconsistency is a puzzling result as it is in contrast with the
predictions of the discounted utility framework1 (DU).

Most of the DU assumptions are very restricting and have been deeply
falsified by empirical evidence.

Nevertheless, the model is still very popular because of its simplicity,
elegance and tractability.

1Samuelson, Paul A. ”A note on measurement of utility.” The review of economic
studies 4.2 (1937): 155-161.
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DU framework in a nutshell

Consider an economy that lasts t = 1, . . . ,T periods.

The decision maker has preferences over consumption profiles
ct = (ct,t , ct+1,t , . . . , cT ,t), where ct,s denotes the level of consumption
in period t from period s’ perspective, with s, t ∈ T = {1, . . . ,T}.
The agent has an initial endowment s0.

Postponing consumption to the next period gives a net return r > 0.
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DU framework in a nutshell

Under completeness, transitivity and continuity the preferences over
consumption profiles can be represented by an intertemporal utility
function:

Ut(ct , . . . , cT ) =
T−t∑
k=0

δku(ct+k)

At each period t, the player chooses the optimal consumption pro-
file c∗t = (c∗t,t , c

∗
t+1,t , . . . , c

∗
T ,t) by maximising her intertemporal utility

function.

The initial optimal consumption plan is optimal for all the subsequent
periods: c∗t,s = c∗t,t∀s, t ∈ T .
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Intertemporal choice and DU model

DU model is based on the following set of assumptions:

1 Integration of new alternatives with existing plans

2 Utility independence

3 Consumption independence

4 Stationary instantaneous utility

5 Independence of discounting from consumption

6 Constant discounting and time consistency

7 Diminishing marginal utility and positive time preference
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Intertemporal choice and DU model

Almost each assumption is usually violated by the empirical evidence:

1 Limited ability of intertemporal reoptimization

2 Habit formation

3 Preference for spread

4 State-dependent preferences

5 Labeled discount factors

6 Time inconsistency and present bias
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Literature usually explains time inconsistency by relaxing the DU as-
sumption of constant discounting in favour of hyperbolic discounting:
a person has a declining rate of time preferences.

This idea has both sociological and psychological justifications.

The most famous model of hyperbolic discounting is the (β, δ)2.

However, it is unclear why the psychological motives should modify the
discount factor rather then the utility function.

The same phenomenon (and maybe more) can be explained by relaxing
the assumption of stationary instantaneous utility.

2Laibson, David. ”Self-control and saving.” Massachusetts Institute of Technology
mimeo (1994).

Stefania Merone 9 / 47



Advantages of the setting

Relaxing the assumption of stationary instantaneous utility rather than con-
stant discounting provides several advantages:

1 Economic interpretation of fluctuations of the instantaneous utility is
more intuitive.

2 Future-biased behavior becomes plausible.

3 Existence of a symmetric application to state-dependent preferences
rather than time-dependent.
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Alternatives to the DU framework

Standard DU model:

Ut(ct , . . . , cT ) =
T−t∑
k=0

δku(ct+k)

(β, δ)-preferences:

Ut(ct , . . . , cT ) = u(ct) + β

T∑
k=t+1

δku(ck)

Dynamic utility:

Ut(ct , . . . , cT ) =
T−t∑
k=0

δkut(ct+k)
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Dynamic preferences’ update

My model provides an alternative set-up to deal with time inconsistency
by relaxing the assumption of stationary instantaneous utility.

The novelty consists in the introduction of law of motion for the utility
function relying on this semi-parametric assumption:

Ut(ct , . . . , cT ) =
T−t∑
k=0

δk [u(ct+k)]
βt

The semi-parametric approach allows to understand the main intuition
of the phenomenon with a minimal divergence from the DU framework.

All the other assumptions of the DU framework are retained.
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The concavifying parameter

βt is an unexpected shock to the player’s elasticity of intertemporal
substitution at time t.

The agent is naive: at any period, Et(βt) = 1.

We remain agnostic on the reasons why βt arises.

βt has the following law of motion:

βt =

{
1 if t = 1

xt if t > 1

xt =

{
βH
t ≥ 1 w.p. θ

0 < βL
t < 1 w.p. (1− θ)

with θ ∈ [0, 1]. Draws are independent over time.
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Characterisation of the β-transformation

Let us consider the following items:

a consumption set C ⊆ R+

a C 2 utility function u : C → R+, with u′(c) ≥ 0 and u′′(c) ≤ 0

a real number β > 0

a function v : C × R → R : v(c , β) = u(c)β.

Some restrictions on β must be imposed so that v(c) still represents convex
preferences. In particular, the following is true:

Proposition 1

The maximum shock each agent can tolerate while retaining convex

preferences is measured by the resilience parameter β̃ = 1− u′′(c)·u(c)
u′(c)2

.
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Characterisation of the β-transformation

Proof.

Consider v(c) = u(c)β. This function represents convex preferences iff
v ′′(c) ≤ 0:

v ′′(c) = βu(c)(β−1) ·
[
u′′(c) + (β − 1)

u′(c)2

u(c)

]
≤ 0

⇒ β ∈ (0, β̃)

where β̃ = 1− u′′(c)·u(c)
u′(c)2

.
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The resilience parameter

β̃ depends on both the value of c and the shape of u. People can have
different values of β̃ because either their preferences are represented by
different utility functions or because they have the same utility function
but made different choices.

the larger the interval (1, β̃), the more likely the individual is to retain
convex preferences after a big shock. When making a choice of c under
u, the decision maker implicitly determines the maximum shock she can
tolerate while keeping standard behaviour.

Since β̃ depends on c , β̃ will generally be time-dependent in the in-
tertemporal choice framework.
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The resilience parameter

Focus on the second term of β̃:

u′′(c) · u(c)
u′(c)2

=
u′′(c)

u′(c)
· u(c)
u′(c)

u′′(c)
u′(c) = d log(u′(c))

dc : percentage change in marginal utility

u′(c)
u(c) = d log(u(c))

dc : percentage change in level utility

The term measures the elasticity of the marginal utility with respect to
the level utility. So, it evaluates how much the power transformation can
bend the utility function before making it linear.
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Comparative statics

cFt cAt

(
βL

βH

) 1
(βH−βL)

1

F

A

ct

v(ct)

v(ct)
L

u(ct)

v(ct)
H

The value functions are both increasing, and they cross at the point
cA s.t. u(cAt ) = 1

vH is steeper than vL as long as u(ct) ≥
(

βL

βH

) 1

(βH−βL)

vL is unambiguously more concave than vH , which becomes convex if
βH ≥ β̃
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The bending effect

B

ct

ct+1
c⋆t+1(ct ;β

L
t )

c⋆t+1(ct ; 1)

c⋆t+1(ct ;β
H
t )

If βt < 1 (βt > 1), the indifference curve becomes unambiguously
more (less) eccentric.

As the EIS increases (decreases), the agent requires weakly less (more)
future consumption — given the same level of current consumption —
in order to stick on the same utility level.

If βt ≥ β̃t , the indifference curve becomes concave.
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The tilting effect

ct

ct+1
c⋆t+1(ct ;β

L
t )

c⋆t+1(ct ; 1)

c⋆t+1(ct ;β
H
t )

If βt < 1 (βt > 1), the indifference curve is tilted to the left (right).

The net effect of the change in EIS depends on the level of current
consumption.

If βt < 1 (βt > 1), the change in future consumption required to stay
on the same utility level is higher (lower) for small (high) amounts of
current consumption.

Stefania Merone 20 / 47



Single-crossing condition

c∗t

c∗t+1
C

ct

ct+1
c⋆t+1(ct ;β

L
t )

c⋆t+1(ct ;β
H
t )

Single-crossing condition for time-dependent indifference curves:∣∣∣∣∂ct+1

∂ct

∣∣∣
βt≥1

∣∣∣∣ > ∣∣∣∣∂ct+1

∂ct

∣∣∣
βt<1

∣∣∣∣
with limct→0

[
c⋆t+1(ct ;β

H
t )− c⋆t+1(ct ;β

L
t )
]
≥ 0
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Dynamic optimality conditions

At each period t, optimality requires:[
u(ct+k)

u(ct)

](βt−1)

· u
′(ct+k)

u′(ct)
= [δ(1 + r)]k (1)

The marginal rate of substitution at time t of consumption in any two
periods depends on the realisation of βt .

It might be optimal to revise the consumption plan at each period.

Crucially, this could lead to present-biased behaviour as well as feature-
biased.
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Evolution of the EIS

We expect the β-transformation to modify the elasticity of intertem-
poral substitution (EIS), which we denote as γ(ct ;βt).

γ(c1; 1) = γ1 denotes the EIS at t = 1, before any β-transformation.

γ(ct ;βt) = γt with t ̸= 1 denotes the EIS of the instantaneous utility
at time t after the transformation.

Our goal is to study the behaviour of γt assuming βt ∈ (0, β̃t).
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Evolution of the EIS

The abstract definition of elasticity of intertemporal substitution3 is:

γv = − v ′(c)

c · v ′′(c)
(2)

where v ′(c) and v ′′(c) denote the first and the second order derivative
of v evaluated at point c , respectively.

Since v(c, β) = u(c)β, (2) is equivalent to:

γv = − u′(c)

c
[
u′′(c) + (β − 1) · u′(c)2

u(c)

] (3)

Notice that β < β̃ ⇒ γv ≥ 0 and limβ→β̃ γv = ∞.

3Hall, Robert E. “Intertemporal Substitution in Consumption.” Journal of Political
Economy 96, no. 2 (1988): 339–57.
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Evolution of the EIS

Proposition 2

Assume v(c) = u(c)β and β ∈ (0, β̂). Then γ(c, β) is increasing in β.

Proof.

We want to show that for any pair (β1, β2) and for any c ∈ C ,
β1 < β2 ⇒ γ(c , β1) ≤ γ(c , β2). Let us assume by contradiction this is not
the case: ∃c ∈ C and a pair (β1, β2) with β1 < β2 such that
γ(c , β1) > γ(c , β2). From Equation (3), this means:

− u′(c)

c
[
u′′(c) + (β1 − 1) · u′(c)2

u(c)

] > − u′(c)

c
[
u′′(c) + (β2 − 1) · u′(c)2

u(c)

] (4)

Using the fact that β1 ∈ (0, β̂) and β2 ∈ (0, β̂), Equation (4) simplifies to
β1 > β2, contradicting our initial statement.
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Application to CRRA

Assume u(c) = c(1−σ)

1−σ , with σ ∈ (0, 1).

Then, the following results:

1 β̃t = β̃ = 1
1−σ

2 γt = (1 + σβt − βt)

3 u(ct)
βt =

[
c(1−σ)

1−σ

]βt

= βt

(1−σ)(βt−1)

c
(1−γt )
t
1−γt
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Summary

1 Non-stationary instantaneous utility leads to different optimal solutions
with respect to the theoretical benchmark.

2 Optimality usually requires a repeated revision of the consumption plan.

3 At each period t, the decision maker implicitely defines her resilience
parameter, which is only partially determined by her intrinsic baseline
preferences.

4 The net effect of a shock to the EIS can be split in a bending effect
and a tilting effect.

5 According to the realisation of the shock, the revised optimal plan
could either increase or decrease current consumption, explaining both
present-biased and future-biased behavior.
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Empirical analysis

Empirical results
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Estimated parameters

Probability to get an high shock: θ̂ = 0.5

Discount factor: δ̂ = 0.89

EIS reciprocal: σ̂ = 0.45

Average beta: β̂ = 1.34

Average high beta: β̂H = 2.04

Average low beta: β̂L = 0.66

Time-inconsistent plans: 93%

Present-biased revisions: 30.5% 4

Future-biased revisions: 36.7% 5

4At least 3 present-biased revisions out of 5.
5At least 3 future-biased revisions out of 5.
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Estimated parameters
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Estimated parameters
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Correlations

δ 1
σ β

δ 1 0.162 0.003
1
σ 0.162 1 -0.034
β 0.003 -0.034 1

Table: Correlation matrix

The analysis reveals a slight positive correlation between the discount
rate and the elasticity of intertemporal substitution.

The result is in line with economic intuition: the higher is the elasticity
of intertemporal substitution, the higher the weight the agent assigns
to future periods.

There is no empirical evidence of meaningful correlation between the
other parameters of interests.
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Correlations

Figure: Contours of kernel density estimation of (β, δ)
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Correlations

Figure: Contours of kernel density estimation of (β, σ)
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Correlations

Figure: Contours of kernel density estimation of (δ, σ)
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Loss functions

(a) Loss of model 1 for
period 1

(b) Loss of model 2 for
period 2

(c) Loss of model 1 for
period 2
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Loss functions

(a) Difference in loss between
model 2 for period 2 and model 1
for period 1

(b) Difference in loss between
model 2 for period 2 and model 1
for period 2
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Model validation
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Model validation
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Model validation
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Model validation
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Model validation
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Model validation
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Model validation
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Regressions on beta

Baseline regressions on beta: http://localhost:28709/session/

viewhtml4c5c229272b1/index.html

Regressions including (σ, δ): http://localhost:28709/session/

viewhtml4c5c7e1b3bd3/index.html

Stefania Merone 45 / 47

http://localhost:28709/session/viewhtml4c5c229272b1/index.html
http://localhost:28709/session/viewhtml4c5c229272b1/index.html
http://localhost:28709/session/viewhtml4c5c7e1b3bd3/index.html
http://localhost:28709/session/viewhtml4c5c7e1b3bd3/index.html


Comparison with hyperbolic discounting

It is possible to prove that there exists a perfect mapping between
the non-stationary utility approach and non-constant discounting if we
allow the discount factor to be increasing over time.

The change in instantaneous utility can be indeed caused by a change
in the value we assign to future.

However, the model is agnostic on the topic and does not rule out other
possible interpretations.
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Comparison with hyperbolic discounting

One might ask if relaxing constant discounting rather then stationary
instantaneous utility would provide better fit.

Since there exists a perfect mapping between the two problems, the
answer is no if we allow the discount factor to be increasing over time.

In this case, the loss functions would be equal.

If we want to restrict our focus on hyperbolic discounting — as the
literature usually does — the loss in fit will increase.

The advantage of the non-stationary instantaneous utility framework is
that both downwards shocks and upwards ones are plausible.

The underlying economic intuition is more convincing if applied to util-
ity rather than to discount factors.
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