Time inconsistency and non-stationary instantaneous utility: empirical evidence from rural Malawi

Stefania Merone

Oxford University Department of Economics Nuffield College

Outline

- 1 Limits of the DU framework
- 2 Dynamic preferences update
- 3 Characterisation of the β -transformation
- 4 The resilience parameter
- 5 Comparative statics
- 6 Evolution of the EIS

Empirical evidence of time inconsistency

- Which option do you prefer?
 - A) £100 today
 - B) £110 next week
- Which option do you prefer?
 - C) $\pounds 100$ one year from now
 - D) $\pounds 110$ one year and a week from now

Most people choose $A \succ B$ and $D \succ C$, providing evidence of **time inconsistency**: a person's relative preference for well-being at an earlier date over a later date changes according to when she is asked.

This behaviour has been consistently detected in humans, rats and pigeons. (Ainslie, 1974)

- Time inconsistency is a puzzling result as it is in contrast with the predictions of the **discounted utility framework**¹ (DU).
- Most of the DU assumptions are very restricting and have been deeply falsified by empirical evidence.
- Nevertheless, the model is still very popular because of its simplicity, elegance and tractability.

¹Samuelson, Paul A. "A note on measurement of utility." The review of economic studies 4.2 (1937): 155-161.

- Consider an economy that lasts $t = 1, \ldots, T$ periods.
- The decision maker has preferences over consumption profiles
 c_t = (c_{t,t}, c_{t+1,t},..., c_{T,t}), where c_{t,s} denotes the level of consumption
 in period t from period s' perspective, with s, t ∈ T = {1,..., T}.
- The agent has an initial endowment s₀.
- Postponing consumption to the next period gives a net return r > 0.

 Under completeness, transitivity and continuity the preferences over consumption profiles can be represented by an intertemporal utility function:

$$U^t(c_t,\ldots,c_T)=\sum_{k=0}^{T-t}\delta^k u(c_{t+k})$$

- At each period t, the player chooses the optimal consumption profile $c_t^* = (c_{t,t}^*, c_{t+1,t}^*, \dots, c_{T,t}^*)$ by maximising her intertemporal utility function.
- The initial optimal consumption plan is optimal for all the subsequent periods: c^{*}_{t,s} = c^{*}_{t,t} ∀s, t ∈ T.

イロト イ団ト イヨト イヨト

DU model is based on the following set of assumptions:

- Integration of new alternatives with existing plans
- Otility independence
- Onsumption independence
- Stationary instantaneous utility
- Independence of discounting from consumption
- Onstant discounting and time consistency
- Oiminishing marginal utility and positive time preference

Almost each assumption is usually violated by the empirical evidence:

- Limited ability of intertemporal reoptimization
- e Habit formation
- In Preference for spread
- State-dependent preferences
- Sector Labeled discount factors
- Time inconsistency and present bias

- Literature usually explains time inconsistency by relaxing the DU assumption of constant discounting in favour of hyperbolic discounting: a person has a declining rate of time preferences.
- This idea has both sociological and psychological justifications.
- The most famous model of hyperbolic discounting is the $(\beta, \delta)^2$.
- However, it is unclear why the psychological motives should modify the discount factor rather then the utility function.
- The same phenomenon (and maybe more) can be explained by relaxing the assumption of stationary instantaneous utility.

²Laibson, David. "Self-control and saving." Massachusetts Institute of Technology mimeo (1994).

Relaxing the assumption of stationary instantaneous utility rather than constant discounting provides several advantages:

- Economic interpretation of fluctuations of the instantaneous utility is more intuitive.
- Future-biased behavior becomes plausible.
- Existence of a symmetric application to state-dependent preferences rather than time-dependent.

Alternatives to the DU framework

• Standard DU model:

$$U^t(c_t,\ldots,c_T)=\sum_{k=0}^{T-t}\delta^k u(c_{t+k})$$

• (β, δ) -preferences:

$$U^{t}(c_{t},\ldots,c_{T})=u(c_{t})+\beta\sum_{k=t+1}^{T}\delta^{k}u(c_{k})$$

• Dynamic utility:

$$U^t(c_t,\ldots,c_T)=\sum_{k=0}^{T-t}\delta^k u_t(c_{t+k})$$

3 1 4 3 1

Dynamic preferences' update

- My model provides an alternative set-up to deal with time inconsistency by relaxing the assumption of stationary instantaneous utility.
- The novelty consists in the introduction of **law of motion** for the utility function relying on this semi-parametric assumption:

$$U^t(c_t,\ldots,c_T)=\sum_{k=0}^{T-t}\delta^k[u(c_{t+k})]^{\beta_t}$$

- The semi-parametric approach allows to understand the main intuition of the phenomenon with a minimal divergence from the DU framework.
- All the other assumptions of the DU framework are retained.

The concavifying parameter

- β_t is an unexpected shock to the player's elasticity of intertemporal substitution at time t.
- The agent is **naive**: at any period, $E_t(\beta_t) = 1$.
- We remain agnostic on the reasons why β_t arises.
- β_t has the following law of motion:

$$\beta_t = \begin{cases} 1 & \text{if } t = 1 \\ x_t & \text{if } t > 1 \end{cases}$$

$$x_t = \begin{cases} \beta_t^H \ge 1 & \text{w.p.}\,\theta\\ 0 < \beta_t^L < 1 & \text{w.p.}\,(1-\theta) \end{cases}$$

with $\theta \in [0, 1]$. Draws are independent over time.

Let us consider the following items:

- a consumption set $\mathcal{C} \subseteq \mathbb{R}_+$
- a C^2 utility function $u: C o \mathbb{R}_+$, with $u'(c) \ge 0$ and $u''(c) \le 0$
- a real number $\beta > 0$
- a function $v : C \times \mathbb{R} \to \mathbb{R} : v(c, \beta) = u(c)^{\beta}$.

Some restrictions on β must be imposed so that v(c) still represents convex preferences. In particular, the following is true:

Proposition 1

The maximum shock each agent can tolerate while retaining convex preferences is measured by the resilience parameter $\tilde{\beta} = 1 - \frac{u''(c) \cdot u(c)}{u'(c)^2}$.

Proof.

Consider $v(c) = u(c)^{\beta}$. This function represents convex preferences iff $v''(c) \leq 0$:

$$egin{aligned} &v''(c)=eta u(c)^{(eta-1)}\cdot\left[u''(c)+(eta-1)rac{u'(c)^2}{u(c)}
ight]\leq 0\ &\Rightarroweta\in(0, ildeeta) \end{aligned}$$
 where $ildeeta=1-rac{u''(c)\cdot u(c)}{u'(c)^2}.$

- $\tilde{\beta}$ depends on both the value of c and the shape of u. People can have different values of $\tilde{\beta}$ because either their preferences are represented by different utility functions or because they have the same utility function but made different choices.
- the larger the interval (1, β̃), the more likely the individual is to retain convex preferences after a big shock. When making a choice of c under u, the decision maker implicitly determines the maximum shock she can tolerate while keeping standard behaviour.
- Since $\tilde{\beta}$ depends on c, $\tilde{\beta}$ will generally be time-dependent in the intertemporal choice framework.

The resilience parameter

Focus on the second term of $\tilde{\beta}$:

$$\frac{u''(c) \cdot u(c)}{u'(c)^2} = \frac{u''(c)}{u'(c)} \cdot \frac{u(c)}{u'(c)}$$

•
$$\frac{u''(c)}{u'(c)} = \frac{d \log(u'(c))}{dc}$$
: percentage change in marginal utility
• $\frac{u'(c)}{u(c)} = \frac{d \log(u(c))}{dc}$: percentage change in level utility

The term measures the **elasticity of the marginal utility with respect to the level utility**. So, it evaluates how much the power transformation can bend the utility function before making it linear.

Comparative statics

• The value functions are both increasing, and they cross at the point c_A s.t. $u(c_t^A) = 1$

• v^H is steeper than v^L as long as $u(c_t) \ge \left(\frac{\beta^L}{\beta^H}\right)^{\frac{1}{(\beta^H - \beta^L)}}$

• v^L is unambiguously more concave than v^H , which becomes convex if $\beta^H \geq \tilde{\beta}$

The bending effect

- If β_t < 1 (β_t > 1), the indifference curve becomes unambiguously more (less) eccentric.
- As the EIS increases (decreases), the agent requires weakly less (more) future consumption given the same level of current consumption in order to stick on the same utility level.
- If $\beta_t \geq \tilde{\beta}_t$, the indifference curve becomes concave.

The tilting effect

- If $\beta_t < 1$ ($\beta_t > 1$), the indifference curve is **tilted to the left** (right).
- The net effect of the change in EIS depends on the level of current consumption.
- If $\beta_t < 1$ ($\beta_t > 1$), the change in future consumption required to stay on the same utility level is higher (lower) for small (high) amounts of current consumption.

Single-crossing condition

Single-crossing condition for time-dependent indifference curves:

$$\left|\frac{\partial c_{t+1}}{\partial c_t}\right|_{\beta_t \ge 1} \right| > \left|\frac{\partial c_{t+1}}{\partial c_t}\right|_{\beta_t < 1}$$

with $\lim_{c_t \to 0} \left[c_{t+1}^{\star}(c_t; \beta_t^H) - c_{t+1}^{\star}(c_t; \beta_t^L) \right] \ge 0$

At each period t, optimality requires:

$$\left[\frac{u(c_{t+k})}{u(c_t)}\right]^{(\beta_t-1)} \cdot \frac{u'(c_{t+k})}{u'(c_t)} = [\delta(1+r)]^k \tag{1}$$

- The marginal rate of substitution at time t of consumption in any two periods depends on the realisation of β_t.
- It might be optimal to revise the consumption plan at each period.
- Crucially, this could lead to present-biased behaviour as well as featurebiased.

- We expect the β-transformation to modify the elasticity of intertemporal substitution (EIS), which we denote as γ(c_t; β_t).
- $\gamma(c_1; 1) = \gamma_1$ denotes the EIS at t = 1, before any β -transformation.
- $\gamma(c_t; \beta_t) = \gamma_t$ with $t \neq 1$ denotes the EIS of the instantaneous utility at time *t* after the transformation.
- Our goal is to study the behaviour of γ_t assuming $\beta_t \in (0, \tilde{\beta}_t)$.

Evolution of the EIS

• The abstract definition of elasticity of intertemporal substitution³ is:

$$\gamma_{\nu} = -\frac{\nu'(c)}{c \cdot \nu''(c)} \tag{2}$$

where v'(c) and v''(c) denote the first and the second order derivative of v evaluated at point c, respectively.

• Since $v(c,\beta) = u(c)^{\beta}$, (2) is equivalent to:

$$\gamma_{\nu} = -\frac{u'(c)}{c \left[u''(c) + (\beta - 1) \cdot \frac{u'(c)^2}{u(c)} \right]}$$
(3)

• Notice that $\beta < \tilde{\beta} \Rightarrow \gamma_{\nu} \ge 0$ and $\lim_{\beta \to \tilde{\beta}} \gamma_{\nu} = \infty$.

³Hall, Robert E. "Intertemporal Substitution in Consumption." Journal of Political Economy 96, no. 2 (1988): 339–57.

Stefania Merone

Evolution of the EIS

Proposition 2

Assume
$$v(c) = u(c)^{\beta}$$
 and $\beta \in (0, \hat{\beta})$. Then $\gamma(c, \beta)$ is increasing in β .

Proof.

We want to show that for any pair (β_1, β_2) and for any $c \in C$, $\beta_1 < \beta_2 \Rightarrow \gamma(c, \beta_1) \le \gamma(c, \beta_2)$. Let us assume by contradiction this is not the case: $\exists c \in C$ and a pair (β_1, β_2) with $\beta_1 < \beta_2$ such that $\gamma(c, \beta_1) > \gamma(c, \beta_2)$. From Equation (3), this means:

$$\frac{u'(c)}{c[u''(c) + (\beta_1 - 1) \cdot \frac{u'(c)^2}{u(c)}]} > -\frac{u'(c)}{c[u''(c) + (\beta_2 - 1) \cdot \frac{u'(c)^2}{u(c)}]}$$
(4)

Using the fact that $\beta_1 \in (0, \hat{\beta})$ and $\beta_2 \in (0, \hat{\beta})$, Equation (4) simplifies to $\beta_1 > \beta_2$, contradicting our initial statement.

э

イロト イポト イヨト イヨト

Assume
$$u(c) = rac{c^{(1-\sigma)}}{1-\sigma}$$
, with $\sigma \in (0,1)$.

Then, the following results:

$$\begin{aligned} \tilde{\beta}_t &= \tilde{\beta} = \frac{1}{1-\sigma} \\ \tilde{\rho}_t &= (1+\sigma\beta_t-\beta_t) \\ \tilde{\rho}_t &= \left[\frac{c^{(1-\sigma)}}{1-\sigma}\right]^{\beta_t} = \frac{\beta_t}{(1-\sigma)^{(\beta_t-1)}} \frac{c_t^{(1-\gamma_t)}}{1-\gamma_t} \end{aligned}$$

- Non-stationary instantaneous utility leads to different optimal solutions with respect to the theoretical benchmark.
- **②** Optimality usually requires a repeated revision of the consumption plan.
- At each period t, the decision maker implicitly defines her resilience parameter, which is only partially determined by her intrinsic baseline preferences.
- The net effect of a shock to the EIS can be split in a bending effect and a tilting effect.
- According to the realisation of the shock, the revised optimal plan could either increase or decrease current consumption, explaining both present-biased and future-biased behavior.

Empirical results

28 / 47

イロト イヨト イヨト イヨト

Estimated parameters

- Probability to get an high shock: $\hat{\theta} = 0.5$
- Discount factor: $\hat{\delta} = 0.89$
- EIS reciprocal: $\hat{\sigma} = 0.45$
- Average beta: $\hat{\beta} = 1.34$
- Average high beta: $\hat{\beta}^H = 2.04$
- Average low beta: $\hat{\beta}^L = 0.66$
- Time-inconsistent plans: 93%
- Present-biased revisions: 30.5% ⁴
- Future-biased revisions: 36.7% ⁵

⁴At least 3 present-biased revisions out of 5.

⁵At least 3 future-biased revisions out of 5.

Estimated parameters

æ

▶ < ∃ >

Image: A matrix

Estimated parameters

Table: Correlation matrix

- The analysis reveals a slight positive correlation between the discount rate and the elasticity of intertemporal substitution.
- The result is in line with economic intuition: the higher is the elasticity of intertemporal substitution, the higher the weight the agent assigns to future periods.
- There is no empirical evidence of meaningful correlation between the other parameters of interests.

Stefania Merone

Stefania Merone

Stefania Merone

Loss functions

æ

< □ > < 同 > < 回 > < 回 > < 回 >

Loss functions

Alternative difference in losses Difference in losses 200 300 250 150 200 F requency F requency 8 150 10 8 8 0 0 -4000 2000 -2000 2000 6000 Delta loss Delta loss

(a) Difference in loss between model 2 for period 2 and model 1 for period 1

(b) Difference in loss between model 2 for period 2 and model 1 for period 2 $\,$

æ

→ ∃ →

Call: lm(formula = loss primary + wea deathinfam +	5.1 ~ male alth_bline delta_inco	+ younger + + r + wrdre me + delta_	older + cal_1 + hh_tot_e	+ +no_school ravens + fir exp, data = n	+ some_primary + lit_total + nydataset)
Residuals: Min 1Q Med -936.2 -397.5 -10	dian 3Q 04.3 203.8	Max 3206.8			
Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	853.24403	159.26276	5.357	0.000000117	***
male	-49.77443	55.11703	-0.903	0.367	
younger	11.64881	61.42851	0.190	0.850	
older	-15.83188	64.94493	-0.244	0.807	
no_school	-48.73703	123.22783	-0.396	0.693	
some_primary	-39.83558	101.69344	-0.392	0.695	
primary	162.64959	111.39240	1.460	0.145	
wealth_bline	-0.12404	0.11993	-1.034	0.301	
r	66.46479	76.97005	0.864	0.388	
wrdrecal_1	-11.72663	19.79709	-0.592	0.554	
ravens	-5.83692	29.16114	-0.200	0.841	
finlit_total	-47.84181	30.01856	-1.594	0.111	
deathinfam	-80.38727	165.02896	-0.487	0.626	
delta_income	0.01773	0.03515	0.504	0.614	
delta_hh_tot_exp	0.01178	0.02147	0.549	0.583	
Signif. codes: ()'***'0.0	01 '**' 0.0	1 '*' 0.	.05 '.' 0.1 '	, 1
Residual standard error: 625.9 on 647 degrees of freedom Multiple R-squared: 0.01855, Adjusted R-squared: -0.002685 F-statistic: 0.8736 on 14 and 647 DF, p-value: 0.588					

æ

メロト メポト メヨト メヨト

Call: lm(formula = loss. morethan_prima finlit_total + data = mydatas	1 ~ male + ry + wealt deathinfa et)	⊦younger + th_bline + r am + delta_i	older + - + wrdre income +	+no_school + some_ ecal_1 + ravens + delta_hh_tot_exp,	_primary +
Residuals:					
Min 1Q Medi	an 3Q	Max			
-936.2 -397.5 -104	.3 203.8	3206.8			
Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept) 1	015.89361	139.12597	7.302	0.0000000000836	**
male	-49.77443	55.11703	-0.903	0.36683	
younger	11.64881	61.42851	0.190	0.84966	
older	-15.83188	64.94493	-0.244	0.80748	
no_school -	211.38662	97.98723	-2.157	0.03135	*
some_primary -	202.48517	75.35626	-2.687	0.00739	**
morethan_primary -	162.64959	111.39240	-1.460	0.14473	
wealth_bline	-0.12404	0.11993	-1.034	0.30140	
r	66.46479	76.97005	0.864	0.38817	
wrdrecal_1	-11.72663	19.79709	-0.592	0.55383	
ravens	-5.83692	29.16114	-0.200	0.84142	
finlit_total	-47.84181	30.01856	-1.594	0.11148	
deathinfam	-80.38727	165.02896	-0.487	0.62635	
delta_income	0.01773	0.03515	0.504	0.61416	
delta_hh_tot_exp	0.01178	0.02147	0.549	0.58333	
Signif. codes: 0	'***' 0.00	01 '**' 0.01	L'*' 0.0)5 '.' 0.1 ' ' 1	
Residual standard Multiple R-squared	error: 625 : 0.01855	5.9 on 647 d 5, Adjuste	degrees o ed R-squa	of freedom ared: -0.002685	

F-statistic: 0.8736 on 14 and 647 DF, p-value: 0.588

Call: $lm(formula = loss.1 \sim male + vounger + older + +vesed + wealth bline +$ r + wrdrecal 1 + ravens + finlit total + deathinfam + delta income + delta_hh_tot_exp. data = mvdataset) Residuals: Min 10 Median 30 Max -821.2 -397.8 -108.4 216.5 3207.5 Coefficients: Estimate Std. Error t value Pr(>|t|)(Intercept) 767.952359 113.463606 6.768 0.000000000292 *** male -29.579962 54.809698 -0.540 0.590 6.865915 59.543494 0.115 younger 0.908 older -16.593211 65.207823 -0.254 0.799 vesed 32.798769 72.290848 0.454 0 650 wealth_bline -0.093468 0.119854 -0.780 0.436 64.954027 77.040916 0.843 0.399 r wrdrecal 1 -7.507623 19.812652 -0.379 0.705 -2.232835 28.874697 ravens -0.0770.938 finlit total -30,132138 28,739543 -1.0480.295 deathinfam -66.821465 165.621278 -0 403 0 687 delta_income 0.028229 0.035058 0.805 0.421 delta_hh_tot_exp 0.006995 0.021479 0.326 0.745 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 628.4 on 649 degrees of freedom Multiple R-squared: 0.007505. Adjusted R-squared: -0.01085 F-statistic: 0.409 on 12 and 649 DF, p-value: 0.9604

3

Call: lm(formula = los primary + we deathinfam +	s.2 ~ male + alth_bline + delta_income	younger + ol r + wrdrecal + delta_hh_	lder + no l_1 + rav _tot_exp	o_school + so /ens + finli , data = myda	ome_primary + t_total + ataset)
Residuals: Min 1Q -1203.2 -589.8	Median -258.2 287	3Q Max .9 6232.7			
Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	1298.775787	248.322979	5.230	0.00000229	* * *
male	37.912260	85.938636	0.441	0.659	
younger	40.119712	95.779517	0.419	0.675	
older	-75.445487	101.262331	-0.745	0.457	
no_school	-175.811585	192.137200	-0.915	0.361	
some_primary	-87.846620	158.560709	-0.554	0.580	
primary	-32.208671	173.683366	-0.185	0.853	
wealth_bline	0.026257	0.186999	0.140	0.888	
r	-74.329607	120.011930	-0.619	0.536	
wrdrecal_1	-22.134701	30.867680	-0.717	0.474	
ravens	21.579117	45.468134	0.475	0.635	
finlit_total	-28.843371	46.805034	-0.616	0.538	
deathinfam	-378.258482	257.313653	-1.470	0.142	
delta_income	-0.007301	0.054805	-0.133	0.894	
delta_hh_tot_exp	-0.009073	0.033481	-0.271	0.786	
Signif. codes:	0 '***' 0.001	'**' 0.01	*' 0.05	'.' 0.1 ' '	1
Residual standar Multiple R-squar F-statistic: 0.4	d error: 975. ed: 0.009479 422 on 14 and	9 on 647 deg , Adjusted 647 DF, p-	grees of R-square value: (freedom ed: -0.0119 0.9607	5

æ

メロト メポト メヨト メヨト

<pre>call: lm(formula = loss.prime ~ male + younger + older + no_school + some_primary + primary + wealth_bline + r + wrdrecal_1 + ravens + finlit_total + deathinfam + delta_income + delta_hh_tot_exp, data = mydataset)</pre>
Residuals: Min 10 Median 30 Max -2912.6 -1047.8 -113.1 961.9 4973.0
Coefficients:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1321 on 647 degrees of freedom Multiple R-squared: 0.07094, Adjusted R-squared: 0.05083 F-statistic: 3.529 on 14 and 647 DF. p-value: 0.00001293

æ

<pre>call: lm(formula = dloss21 ~ male + younger + older + no_school + some_primary + primary + wealth_bline + r + wrdrecal_1 + ravens + finlit_total + deathinfam + delta_income + delta_hh_tot_exp, data = mydataset)</pre>					
Residuals: Min 1Q Median 3Q Max -2353.6 -431.2 -188.2 234.5 6857.2					
Coefficients:					
ESTIMATE Star Error L Value Pr(> L)					
(intercept) 445.531/6 234.028/9 1.904 0.05/4.					
Male 8/.68669 80.991/6 1.083 0.2/94					
younger 28.4/090 90.2001/ 0.315 0.7520					
01der - 59.01301 95.43338 - 0.025 0.5324					
no_school -127.07455 181.07725 -0.702 0.4851					
some_primary -48.01104 149.43350 -0.321 0.7481					
primary -194.85826 163.68565 -1.190 0.2343					
Wealth_bline 0.15030 0.17624 0.853 0.3941					
r -140./9440 113.103/0 -1.245 0.2136					
Wrdrecal_1 -10.4080/ 29.09085 -0.358 0.7206					
ravens 27.41603 42.85086 0.640 0.5225					
finlit_total 18.99844 44.11080 0.431 0.6668					
deathinfam -297.87121 242.50194 -1.228 0.2198					
delta_income -0.02503 0.05165 -0.485 0.6281					
delta_hh_tot_exp -0.02086 0.03155 -0.661 0.5088					
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1					
Residual standard error: 919.7 on 647 degrees of freedom Multiple R-squared: 0.01481, Adjusted R-squared: -0.006506 F-statistic: 0.6948 on 14 and 647 DF, p-value: 0.7806					

æ

メロト メポト メヨト メヨト

Call: lm(formula = dlos some_primary ravens + finl data = mydata	s2prime ~ m + primary + it_total + uset)	ale + youn wealth_bl deathinfam	ger + old ine + r + + delta_	ler + no_sch wrdrecal_1 income + de	nool + L + elta_hh_tot_ex	p,
Residuals: Min 1Q -3805.3 -748.9	Median 348.1 106	3Q Ma: 0.9 3749.3	x 2			
Coefficients:						
	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	-153.79577	352.72983	-0.436	0.6630		
male	-159.14576	122.07135	-1.304	0.1928		
younger	16.12994	136.04980	0.119	0.9057		
older	64.57960	143.83785	0.449	0.6536		
no_school	-114.97325	272.92086	-0.421	0.6737		
some_primary	-119.77036	225.22721	-0.532	0.5951		
primary	-50.65115	246.70815	-0.205	0.8374		
wealth_bline	-0.36246	0.26562	-1.365	0.1729		
r	-793.98789	170.47068	-4.658	0.00000388	***	
wrdrecal_1	-86.65277	43.84593	-1.976	0.0485	sk.	
ravens	30.66159	64.58511	0.475	0.6351		
finlit_total	-170.79350	66.48411	-2.569	0.0104	*	
deathinfam	-184.59144	365.50061	-0.505	0.6137		
delta_income	-0.02621	0.07785	-0.337	0.7364		
delta_hh_tot_exp	-0.03497	0.04756	-0.735	0.4625		
Signif. codes: 0	'***' 0.00	1 '**' 0.0	1'*'0.0)5'.'0.1'	''1	
Residual standard Multiple R-square F-statistic: 3.43	error: 138 d: 0.06913 on 14 and	6 on 647 d , Adjust 647 DF.	egrees of ed R-squa p-value:	freedom ared: 0.048 0.00002091	399	

4 / 47

- Baseline regressions on beta: http://localhost:28709/session/ viewhtml4c5c229272b1/index.html
- Regressions including (σ, δ) : http://localhost:28709/session/viewhtml4c5c7e1b3bd3/index.html

Comparison with hyperbolic discounting

- It is possible to prove that there exists a perfect mapping between the non-stationary utility approach and non-constant discounting **if** we allow the discount factor to be increasing over time.
- The change in instantaneous utility can be indeed caused by a change in the value we assign to future.
- However, the model is agnostic on the topic and does not rule out other possible interpretations.

Comparison with hyperbolic discounting

- One might ask if relaxing constant discounting rather then stationary instantaneous utility would provide better fit.
- Since there exists a perfect mapping between the two problems, the answer is no **if** we allow the discount factor to be increasing over time.
- In this case, the loss functions would be equal.
- If we want to restrict our focus on hyperbolic discounting as the literature usually does the loss in fit will increase.
- The advantage of the non-stationary instantaneous utility framework is that both downwards shocks and upwards ones are plausible.
- The underlying economic intuition is more convincing if applied to utility rather than to discount factors.