The Effects of Parents' Receiving Unemployment Benefits on Children's Educational Attainment

Tiansui Tu (Sean)

University of Oxford

01/03/2023

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ♡ 1/39

Clarifying the question

Interested in

$$D \longrightarrow Y$$

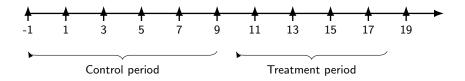
 $Y,D\in\{0,1\}$ D=1: mother (NOT father) receives a positive amount of UI benefit when the child is 10 to 18

Y = 1: child graduates from high school at 19

Focusing on

- 1. US: Unemployment Insurance (UI) provides cash benefits to workers who lose their jobs **through no fault of their own**, and they meet work/wage requirements.
- 2. Mothers unemployed for ≥ 1 week when the child is 10 to 18
- 3. Mothers average lagged wage ≥ 0 when the child is 10 to 18

Timeline



< □ ▶ < @ ▶ < \ > ↓ < \ > ▷ ↓ ③ ♀ ♀ 3/39

OLS: close to 0, NOT statistically significantly different from 0

Linear IV: negative, statistically significantly different from 0

Non-parametric IV: insignificantly negative

Falsification tests: evidence unclear, inclined to not favor the validity of IV, probably my IV is rubbish

For falsification tests, not sure how to cluster as they all assume i.i.d.

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≧ り < ○ 4/39

Simple Model

Mother is employed with probability s and unemployed with probability 1 - s,

$$\max_{i,s} \log(e) - s^2$$

subject to

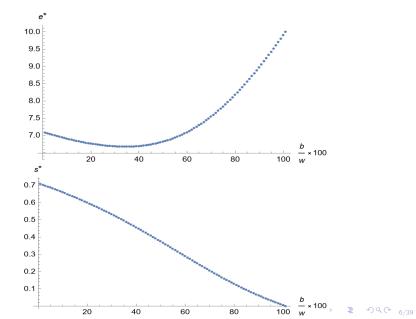
$$i = sw + (1 - s)b$$
$$e = i$$
$$i \ge 0, 0 \le s \le 1$$

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q @ 5/39

- s: search effort
- *i*: investment in child's education
- e: education output from the child
- w: wage
- b: UI benefit

What is $\partial e^* / \partial b$?

Comparative Statics Set w = 10,



Possible causal channels

Among unemployed parents, UI affects child's education through:

Pecuniary channels:

+: Improving home material conditions

 -: Prolonging parents' unemployment spell, losing potential income Non-pecuniary channels:

+: Reducing parental stress, better family functioning

-: Stigma/ Exhibits negative role model effect on child

Ambiguous overall effect

(Ku and Plotnick, 2003) (Heflin and Acevedo, 2011)

Why OLS may not be sufficient?

E.g.

$$Y = \beta_0 + \beta_1 D + \beta_2 X + U$$

 $X \in [0,1]$: fraction of years (child is -1 to 10) mother has high school degree

At least 2 selection biases: (Acevedo and Heflin, 2014)

- 1. Mothers eligibile for UI differ from those ineligible (conditioning on sample selection) in some characteristics
- 2. Among eligible mothers, mothers who take up UI differ from those who do not in some characteristics

These characteristics may be unobservable and related to both D and Y

OLS may overestimate the effect if mothers getting UI are better in some sense?

IV motivation

Dummy Z: whether mother unemployed due to business closure for more than once when child is 10 to 18

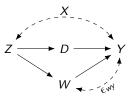
Relevance: eligible for UI if unemployed not because of the fault of your own

Exogeneity:

- i. Cylus, Jonathan (2015) used this as an IV for receiving UI on health, balance table looks alright for PSID
- ii. Maybe some randomness/unexpectedness
- iii. Even if ability \rightarrow firm size \rightarrow business closure, it is arguably not correlated with welfare preference, so better than nothing (maybe)
- iv. No clear reason for direct effect, maybe exists indirect effect on Y

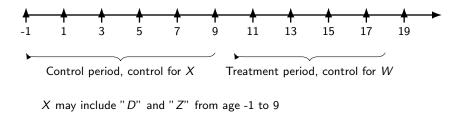
Causal diagram for IV

For unemployed mothers,



 $Y, D, Z \in \{0, 1\}$ Control for X, WTypically, chronological order is X, Z, W, Y so Mostly, X from ages -1 to 9; W from ages 10 to 18 Possibly doomed if there exists **unobservable** ϵ_{wy} or $Z \rightarrow Y$ directly

Timeline



< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の へ つ 11/39

If ϵ_{wy} observed, may also control for it

Data

Longitudinal surveys: (https://www.nlsinfo.org/content/cohorts)

NLSY79 cohort: 12,686 American youths ages 14-22 when first interviewed, available annually 1979-1994 and biennially 1996-2018 NLSY79 Child and Young Adult cohort: currently included 11,545 children born to interviewed NLSY79 mothers

Transform it to cross-sectional:

Y by definition fixed across time Take central tendency measures of control variables Unit is mother-child pair, independence across mother clusters Cannot use child weights

Sample selection:

Mothers unemployed/have positive average wage Filter out the observations of child being 17 (or 18) and graduating at 17 (or 18), very few obs

Y, D, Z distribution

. tab Y

Y	Freq.	Percent	Cum.
0 1	917 1,158	44.19 55.81	44.19 100.00
Total	2,075	100.00	

. tab D

D	Freq.	Percent	Cum.
0 1	1,246 829	60.05 39.95	60.05 100.00
Total	2,075	100.00	

. tab Z

Z	Freq.	Percent	Cum.
0 1	1,820 255	87.71 12.29	87.71 100.00
Total	2,075	100.00	

< □ > < □ > < □ > < Ξ > < Ξ > Ξ → ○ Q (~ 13/39)

Stable Unit Treatment Value Assumption violated:

(i) effect of mothers' receiving UI once different from those receiving UI twice;

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 14/39

(ii) receiving UI at child age 15 less impactful than 18

Not sure how this affects the results

Relevance: $Cov(D, Z) \neq 0$?

Exogeneity: Cov(U, Z) = 0?

$Cov(D, Z) \neq 0$?

. reg D Z, r cluster(mid)

Linear regression

Number of obs	=	2,075
F(1, 1312)	=	26.10
Prob > F	=	0.0000
R-squared	=	0.0199
Root MSE	=	.48512

(Std. err. adjusted for 1,313 clusters in mid)

D	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
Z	.2106874	.0412409	5.11		.129782	.2915927
_cons	.3736264	.0145581	25.66		.3450667	.4021861

Likely holds, also robust to adding controls (not shown)

Cov(U, Z) = 0?

.

Subsample of mothers unemployed because of either laid off or closure, where $Z \not\rightarrow D$, so now check if $Z \rightarrow Y$ (reg *D* on *Z* gives -.016 with pval 0.724)

```
reg Y Z if layfclos == 1, r cluster(mid)
```

Linear regression

Number of obs	=	871
F(1, 591)	=	9.49
Prob > F	=	0.0022
R-squared	=	0.0126
Root MSE	=	.49566

(Std. err. adjusted for 592 clusters in mid)

Y	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
Z _cons	1230201 .5779221		-3.08 26.18		2014605 .5345713	0445797 .6212729

Violated, so need to condition on X or W

Cov(U, Z) = 0?

. reg Y Z ///
> hs uni afqt lwage_ lnfaminc_ cfemale if layfclos == 1, r cluster(mid)

Linear	regression

Number of obs	=	832
F(7, 567)	=	14.15
Prob > F	=	0.0000
R-squared	=	0.0987
Root MSE	=	.47528

(Std. err. adjusted for 568 clusters in mid)

Y	Coefficient	Robust std. err.	t	P> <mark> </mark> t	[95% conf.	interval]
Z hs_ afqt lwage_ lnfaminc_ cfemale cons	0729455 .1323256 .0887129 1.03e-06 3.33e-06 1.07e-06 .1278452 .305127	.0404357 .0485867 .0538617 9.33e-07 1.93e-06 6.74e-07 .033785 .0435296	-1.80 2.72 1.65 1.10 1.73 1.59 3.78 7.01	0.072 0.007 0.100 0.270 0.085 0.113 0.000 0.000	1523675 .0368938 0170798 -8.03e-07 -4.55e-07 -2.53e-07 .0614862 .2196281	.0064765 .2277574 .1945057 2.86e-06 7.12e-06 2.40e-06 .1942041 .390626

 ${\sf Z}$ gets smaller coefficient and less significance, can be just because of small sample size

Welfare Preference with D and Z

logistic D up on alf 70

Using "D" and "Z" from child age -1 to 9, see how it related to whether mother wants to go on welfare if needed (answered in 1979)

wc_onwelf_79 cons	.7406709	.0769227	-2.89	0.004	.6042594	.9078773
D_	Odds ratio	Std. err.	z	P> z	[95% conf.	interval]
Log likelihoo	d = -1236.062 :	1			Prob > chi2 Pseudo R2	
Logistic regr	ession				Number of ob LR chi2(1)	= 8.50

Note: _cons estimates baseline odds.

logistic Z_ wc_onwelf_79

Logistic regression

Number of obs = 1,703 LR chi2(1) = 0.23 Prob > chi2 = 0.6289 Pseudo R2 = 0.0003

돌▶ 돌 ∽ � ೕ 18/39

Log likelihood = -436.44611

Ζ_	Odds ratio	Std. err.	z	P> z	[95% conf.	interval]
wc_onwelf_79	1.100476	.2171009	0.49	0.627	.7475776	1.619962
_cons	.0740038	.0086838	-22.19	0.000	.0587993	.09314

Control for pecuniary channel?

Not control for wages/net family income at child age 10-18, as will eliminate the pecuniary channel, assume this is ok

lwage: wage when 10-18 (treatment period)

lwage_: wage when -1 to 9 (control period)

```
reg lwage Z lwage_ if layfclos == 1, r cluster(mid)
```

Linear regression

Number of obs	=	871
F(2, 591)	=	65.89
Prob > F	=	0.0000
R-squared	=	0.6640
Root MSE	=	9640.5

(Std. err. adjusted for 592 clusters in mid)

lwage	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
Z	-149.3183	812.0841	-0.18	0.854	-1744.24	1445.604
lwage_	1.151619	.1083839	10.63	0.000	.9387542	1.364483
_cons	5654.998	813.7682	6.95	0.000	4056.769	7253.228

OLS v.s. IV without controls

•

.

reg Y D, r cluster(mid)

Linear regression	Number of obs	=	2,075
	F(1, 1312)	=	1.92
	Prob > F	=	0.1658
	R-squared	=	0.0012
	Root MSE	=	.49656

(Std. err. adjusted for 1,313 clusters in mid)

Y	Coefficient					
D	.0348696	.0251482	1.39	0.166	0144655	.0842047
_cons	.5441413	.0158713	34.28	0.000	.5130054	.5752771

ivregress 2sls Y (D = Z), r cluster(mid)

Instrumental variables 2SLS regression	Number of obs	=	2,075
	Wald chi2(1)	=	6.40
	Prob > chi2	=	0.0114
	R-squared	=	
	Root MSE	=	.5751

(Std. err. adjusted for 1,313 clusters in mid)

Y	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
D _cons			-2.53 8.77		9906632 .6065073	1259251 .9557345

Instrumented: D

Instruments: Z

Kitchen-sink IV 1

Instrumental variables 2SLS regression

=	1,551
=	1293.63
=	0.0000
=	
=	.51059
	= = =

(Std. err. adjusted for 1,030 clusters in mid)

Y	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
D	4893457	.2564322	-1.91	0.056	9919437	.0132522
D_	.0356348	.0452778	0.79	0.431	0531079	.1243776
Z_	.0521681	.0600173	0.87	0.385	0654637	.1698
cfemale	.1030439	.0276488	3.73	0.000	.0488532	.1572346
chispanic	.0714761	.0467947	1.53	0.127	0202399	.163192
cblack	.0543934	.0464901	1.17	0.242	0367255	.1455123
lwage_	-3.63e-06	3.07e-06	-1.18	0.237	-9.65e-06	2.38e-06
<pre>lnfaminc_</pre>	9.73e-07	6.04e-07	1.61	0.107	-2.11e-07	2.16e-06
wkunemp	.0084127	.007102	1.18	0.236	0055071	.0223324
hrwrked	.005513	.0023374	2.36	0.018	.0009318	.0100942
numjob	0422308	.0343592	-1.23	0.219	1095736	.0251121
wkunemp_	0028777	.0036468	-0.79	0.430	0100253	.00427
hrwrked_cdf_	.0005897	.0003167	1.86	0.063	000031	.0012103
hrwrked_cdfsq_	-3.61e-07	2.54e-07	-1.42	0.156	-8.59e-07	1.38e-07
firmsz	7.67e-07	6.96e-06	0.11	0.912	0000129	.0000144
numjob_	.0004487	.0435222	0.01	0.992	0848532	.0857507

Kitchen-sink IV 2

industry_						
agric	.1946883	.1684314	1.16	0.248	1354312	.5248078
const	.1005961	.1247875	0.81	0.420	1439829	.3451752
finan	.1103448	.1304852	0.85	0.398	1454016	.3660911
missing	.0803939	.1188532	0.68	0.499	1525541	.313342
perso	.0885184	.135851	0.65	0.515	1777447	.3547815
profe	.0359227	.124032	0.29	0.772	2071756	.2790209
publi	.146733	.1673786	0.88	0.381	1813231	.4747891
recre	.0998959	.1932579	0.52	0.605	2788826	.4786745
retai	.0524533	.120571	0.44	0.664	1838615	.2887681
trans	.3904062	.2201318	1.77	0.076	0410443	.8218566
hs_	.1915829	.0483595	3.96	0.000	.0968	.2863658
uni_	.0572455	.0443942	1.29	0.197	0297656	.1442566
afqt	1.60e-09	8.99e-07	0.00	0.999	-1.76e-06	1.76e-06
married_	.1010687	.0463787	2.18	0.029	.0101681	.1919693
livewmo_	.0902171	.1091119	0.83	0.408	1236383	.3040725
famsize_	0320578	.017904	-1.79	0.073	067149	.0030334
cmom_agbrth	0081644	.0089799	-0.91	0.363	0257646	.0094358
cbirth_order	0701825	.0261611	-2.68	0.007	1214573	0189077
numchild_	.0393047	.031738	1.24	0.216	0229005	.10151
religionr_79	.0145515	.0092064	1.58	0.114	0034928	.0325958
region_						
2	0432694	.0545702	-0.79	0.428	150225	.0636863
3	1022311	.0570762	-1.79	0.073	2140984	.0096362
4	0353054	.053567	-0.66	0.510	1402948	.069684
urban_	.0113271	.0610875	0.19	0.853	1084021	.1310563
smsa_	.0459327	.0559995	0.82	0.412	0638244	.1556897
I						

Kitchen-sink IV 3

cbirth_y						
1972	0	(empty)				
1973	0	(empty)				
1974	0	(empty)				
1975	0	(empty)				
1976	3603743	.2546512	-1.42	0.157	8594814	.1387328
1977	3864126	.240964	-1.60	0.109	8586933	.0858681
1978	4682505	.2341702	-2.00	0.046	9272156	0092854
1979	4540273	.2074307	-2.19	0.029	8605839	0474707
1980	4826437	.2237538	-2.16	0.031	921193	0440944
1981	4201759	.2059493	-2.04	0.041	8238292	0165227
1982	4949668	.2106725	-2.35	0.019	9078774	0820562
1983	547367	.2119718	-2.58	0.010	9628241	1319098
1984	6487694	.2042371	-3.18	0.001	-1.049067	2484721
1985	5328462	.186536	-2.86	0.004	89845	1672424
1986	670939	.1985861	-3.38	0.001	-1.060161	2817175
1987	5389211	.1889141	-2.85	0.004	909186	1686563
1988	6713117	.2021405	-3.32	0.001	-1.0675	2751236
1989	4927662	.1692618	-2.91	0.004	8245132	1610192
1990	6453117	.1949007	-3.31	0.001	-1.02731	2633134
1991	5224169	.1807786	-2.89	0.004	8767365	1680974
1992	5080718	.1893704	-2.68	0.007	8792309	1369127
1993	0886561	.1386673	-0.64	0.523	360439	.1831269
1994	1480053	.1787939	-0.83	0.408	4984348	.2024243
1995	0943346	.1366725	-0.69	0.490	3622077	.1735386
1996	3653381	.1906135	-1.92	0.055	7389336	.0082574
1997	2756392	.1593375	-1.73	0.084	5879349	.0366566
1998	1997993	.1599481	-1.25	0.212	5132918	.1136932
1999	0178646	.1238507	-0.14	0.885	2606075	.2248783
2000	0	(omitted)				
_cons	.883801	.3757263	2.35	0.019	.1473909	1.620211

Partialing-out lasso IV

Estimating lasso for Y using cv Estimating lasso for D using cv Estimating lasso for pred(D) using cv

Partialing-out IV linear model	Number of obs	=	1,551
	Number of controls	=	71
	Number of instruments	=	1
	Number of selected controls	=	61
	Number of selected instruments	=	1
	Wald chi2(1)	=	3.52
	Prob > chi2	=	0.0607

(Std. err. adjusted for 1,030 clusters in mid)

Y	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
D	4936906	.2631932	-1.88	0.061	-1.00954	.0221586

Endogenous: D

Assume heterogeneous treatment effect across compliance pop

Linear IV generally has negative weightings in computation of LATE

Need a fully saturated model or at least rich covariates, so use non-parametric $\ensuremath{\mathsf{IV}}$

Frolich (2007): need $D, Z \in \{0, 1\}$

Allow me to use Prof Romu Meango's slides: page 51/52 of Chapter 5: The LATE Model for Adv ERM

<□ > < □ > < □ > < □ > < □ > < □ > < □ > □ < つ < ℃ 25/39

Frolich (2007)

LATE: Extension with covariates

Frölich (2007) suggests three estimators in the case with covariates, where D and Z are binary. Define:

 $\widehat{m}_d(x) = \widehat{E}(Y|X = x, Z = d)$: a nonparametric estimator of the conditional moment, $\widehat{\mu}_d(x) = \widehat{E}(D|X = x, Z = d)$: a nonparametric estimator of the propensity score.

The ATE of the population of compliers is nonparametrically estimated by

1. A ratio between to matching estimator:

$$\widehat{E}(Y_{1} - Y_{0}|T = c) = \frac{\sum_{i:Z_{i}=1} (Y_{i} - \widehat{m}_{0}(X_{i})) - \sum_{i:Z_{i}=0} (Y_{i} - \widehat{m}_{1}(X_{i}))}{\sum_{i:Z_{i}=1} (D_{i} - \widehat{\mu}_{0}(X_{i})) - \sum_{i:Z_{i}=0} (D_{i} - \widehat{\mu}_{1}(X_{i}))}$$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · の Q @ 26/39

Frolich (2007)

LATE: Extension with covariates

Define:

 $\hat{\pi}(x) = \hat{E}(D|X = x)$: a nonparametric estimator of the propensity score. $\hat{m}_{\pi d}(\rho) = \hat{E}(D|\pi(X) = \rho, Z = d)$: an estimator of the conditional moment at a given propensity score.

2. An inverse propensity score weighting estimator:

$$\widehat{E}(Y_1 - Y_0 | T = c) = \frac{\sum_i (Y_i Z_i / \widehat{\pi}(X_i) - Y_i (1 - Z_i) / (1 - \widehat{\pi}(X_i)))}{\sum_i (D_i Z_i / \widehat{\pi}(X_i) - D_i (1 - Z_i) / (1 - \widehat{\pi}(X_i)))}$$

3. A propensity score matching estimator (R package: causalweight):

$$\widehat{E}(Y_1 - Y_0 | T = c) = \frac{\sum_i (\widehat{m}_{\pi 1}(\widehat{\pi}(X_i)) - \widehat{m}_{\pi 0}(\widehat{\pi}(X_i)))}{\sum_{i: Z_i = 1} (\widehat{\mu}_{\pi 1}(\widehat{\pi}(X_i)) - \widehat{\mu}_{\pi 0}(\widehat{\pi}(X_i)))}$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ∽ Q ○ 27/39

Stata nplate package

Bootstrap results

```
Number of obs = 1,551
Replications = 100
```

(Replications based on 1,030 clusters in mid)

	Observed coefficient	Bootstrap std. err.	z	P> z		-based interval]
late	2757542	.7461053	-0.37	0.712	-1.738094	1.186585

Fitting issue with R package (occurredWarning: glm.fit: fitted probabilities numerically 0 or 1), need to investigate into this, maybe too many variables

LATE assumptions

Notations: potential outcomes Y(z, d), D(z) and omit the conditioning on X:

Stronger:

- S1 Unconfoundedness: $Y(1,1), Y(1,0), Y(0,1), Y(0,0), D(1), D(0) \perp Z$
- S2 Monotonicity: $D(1) \ge D(0)$
- S3 Exclusion Restriction: Y(1, d) = Y(0, d) := Y(d)
- S4 Existence of Compliers: P(D = 1|Z = 1) > P(D = 1|Z = 0)

Weaker:

W1 Unconfounded Type: For all compliance types $t \in \{a, c, n, d\}$, P(T = t) = P(T = t | Z = 0) = P(T = t | Z = 1)

W2 No Defiers: P(T = d) = 0

W3 Mean Exclusion: $E[Y(z, d)|Z = z, T = t] = E[Y(d)|T = t] \forall (z, t)$

W4 Existence of Compliers. P(T = c) > 0

 $S3 \implies W3$ but W3 $\implies S3$ W4 equivalent to S4 under W1 and W2 Falsification test MW (Mourifie and Wan, 2017)

MW tests for implications (necessary not sufficient for LATE) of S1-S4: forall $A \in \mathcal{B}_{\mathcal{Y}}$

$$P(Y \in A, D = 1 | Z = 0) = P(Y(z, 1) \in A, D(0) = 1 | Z = 0)$$
$$= P(Y(1) \in A, D(0) = 1)$$
$$P(Y \in A, D = 1 | Z = 1) = P(Y(z, 1) \in A, D(0) = 1 | Z = 1)$$
$$= P(Y(1) \in A, D(1) = 1)$$

$$P(Y(1) \in A, D(0) = 1) \le P(Y(1) \in A, D(1) = 1)$$

$$\implies P(Y \in A, D = 1 | Z = 0) \le P(Y \in A, D = 1 | Z = 1)$$

Similarly

$$\implies P(Y \in A, D = 0 | Z = 1) \le P(Y \in A, D = 0 | Z = 0)$$

Falsification test MW (Mourifie and Wan, 2017)

$$\begin{aligned} \text{MW tests } \forall y \in \{0, 1\} \\ \theta(y, 1) &\equiv E[P(Z = 1)D(1 - Z) - P(Z = 0)DZ \mid Y = y] \leq 0 \\ \theta(y, 0) &\equiv E[P(Z = 0)(1 - D)Z - P(Z = 1)(1 - D)(1 - Z) \mid Y = y] \leq 0 \\ \text{Let } \mathcal{V} &= \mathcal{Y} \times \{0, 1\} \\ H_0 : sup_{\{\theta(v) \in \mathcal{V}\}} \theta(v) \leq 0, \ H_1 : sup_{\{\theta(v) \in \mathcal{V}\}} \theta(v) > 0 \end{aligned}$$

But MW assumes

$$\{(D_i, Y_i, Z_i)\}_{i=1}^n$$

<□ ▶ < @ ▶ < E ▶ < E ▶ E のQ @ 31/39

for consistency and validity of the proposed testing procedure, and I am not sure how clustering on mothers affects the results

Full Sample without conditioning on covariates: H_0 not rejected at 1% level but rejected at 5%, 10% To condition on covariates, zoom in sub-samples: e.g. the child is female: not rejected; the child is male: rejected only at 10%, not at 1% and not 5%

So conditioning on child gender seems to be useful

But the sample size is limited, there are many variables to split the sample. We also need to discretize continuous variables.

Assume unconfoundednees S1, (jointly) tests for S2-S4

Intuition:

If condition on observables, even if the test is passed for the FULL sample, LATE assumptions may be violated in some subpopulation defined by observables. If the subpopulation is small, then such violation is diluted in FULL sample and NOT detected by the test

Need a data-driven way of splitting the sample to detect as many violations as possible

Falsification test FGK

In MW, rearranging,

$$P(Y \in A, D = 1 | Z = 0, X = x) - P(Y \in A, D = 1 | Z = 1, X = x) \le 0$$
$$P(Y \in A, D = 0 | Z = 1, X = x) - P(Y \in A, D = 0 | Z = 0, X = x) \le 0$$

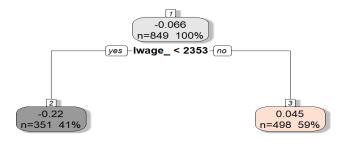
Similar to saying, conditioning of X = x, how does changing Z (treatment) change the inequalities (outcome)?

Reformulate as a conditional average treatment effect (CATE) question, and use causal forest to estimate CATE.

Use trees to split the sample in covariate space that delivers the largest heterogeneity between the newly formed subgroup

Finally, if the CATE of that subgroup has positive sign, this means violations of the null hypothesis implied by LATE assumptions

I guess the sample size is not large enough for causal forest...



maybe try Huber and Mellace (2015) who assume weaker LATE assumptions not full independence as in MW and FGK

estimate compiler population and characteristics

Sensitivity analysis, Baysian IV?

Lewbel's (2012) generated IV based on higher moments, do not need an actual IV $\,$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > □ < つ < ⊙ </p>

Manski's Monotone IV to bound LATE

Stein-like 2SLS (interesting but maybe not useful)

other suggestions?

Don't think I have time for this ...

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ ミ ● ○ Q (~ 37/39)

Structural Model (Simplified)

$$\max_{c_t, i_t, s_t} \sum_{t=1}^{T} \beta^{t-1} \left[\log(c_t) - \gamma s_t^2 \right] + \alpha \log(e_T) \text{ subject to}$$

$$c_t + i_t + a_{t+1} = (1 - p_t)b_t + (1 - \tau_t) \left[p_t w_t + (1 + r_t)a_t \right]$$

$$e_T = \text{sigmoid} \left(\sum_{t=1}^{T} i_t \right)$$

$$s_t = p_t, c_t, i_t \ge 0, \ 0 \le s_t \le 1, T = 18$$

 α includes discounting factor and weight on child's education; τ_t is marginal tax rate from NBER TAXSIM; p_t is fraction of time employed.

Parameters/estimand: $\beta > 0, \alpha > 0, \gamma > 0$

Inputs: w_t, b_t, r, a_1, a_T ; r is retrieved from data on $(1 + r)a_t$

Simulated variables: c_t , i_t , s_t and for 1 < t < T, a_t

Matching moments

Some first moments, average across i, for each t

 \bar{c}_t, \bar{i}_t

 \bar{s}_t with \bar{p}_t

sigmoid
$$\left(\sum_{t=1}^{\mathcal{T}} i_t
ight)$$
 with $ar{e}_{\mathcal{T}} \in \{0,1\}$ or generally some production function

Maybe consider second moments

Matching regression coefficients (e.g. of search effort on benefit level)

< □ ▶ < 酉 ▶ < ≡ ▶ < ≡ ▶ ≡ ∽ Q (~ 39/39

Currently not identified